68 datasets found
  1. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  2. Netflix Movies and TV Shows Dataset Cleaned(excel)

    • kaggle.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Tawri (2025). Netflix Movies and TV Shows Dataset Cleaned(excel) [Dataset]. https://www.kaggle.com/datasets/gauravtawri/netflix-movies-and-tv-shows-dataset-cleanedexcel
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Gaurav Tawri
    Description

    This dataset is a cleaned and preprocessed version of the original Netflix Movies and TV Shows dataset available on Kaggle. All cleaning was done using Microsoft Excel — no programming involved.

    🎯 What’s Included: - Cleaned Excel file (standardized columns, proper date format, removed duplicates/missing values) - A separate "formulas_used.txt" file listing all Excel formulas used during cleaning (e.g., TRIM, CLEAN, DATE, SUBSTITUTE, TEXTJOIN, etc.) - Columns like 'date_added' have been properly formatted into DMY structure - Multi-valued columns like 'listed_in' are split for better analysis - Null values replaced with “Unknown” for clarity - Duration field broken into numeric + unit components

    🔍 Dataset Purpose: Ideal for beginners and analysts who want to: - Practice data cleaning in Excel - Explore Netflix content trends - Analyze content by type, country, genre, or date added

    📁 Original Dataset Credit: The base version was originally published by Shivam Bansal on Kaggle: https://www.kaggle.com/shivamb/netflix-shows

    📌 Bonus: You can find a step-by-step cleaning guide and the same dataset on GitHub as well — along with screenshots and formulas documentation.

  3. d

    Navigating Stats Can Data & Scrubbing Data Clean with Excel Workshop

    • search.dataone.org
    • borealisdata.ca
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Costanzo, Lucia; Jadon, Vivek (2024). Navigating Stats Can Data & Scrubbing Data Clean with Excel Workshop [Dataset]. http://doi.org/10.5683/SP3/FF6AI9
    Explore at:
    Dataset updated
    Jul 31, 2024
    Dataset provided by
    Borealis
    Authors
    Costanzo, Lucia; Jadon, Vivek
    Description

    Ahoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.

  4. q

    Cleaning Biodiversity Data: A Botanical Example Using Excel or RStudio

    • qubeshub.org
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shelly Gaynor (2020). Cleaning Biodiversity Data: A Botanical Example Using Excel or RStudio [Dataset]. http://doi.org/10.25334/DRGD-F069
    Explore at:
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    QUBES
    Authors
    Shelly Gaynor
    Description

    Access and clean an open source herbarium dataset using Excel or RStudio.

  5. Data Cleaning Excel Tutorial

    • kaggle.com
    zip
    Updated Jul 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Khaled Idris (2023). Data Cleaning Excel Tutorial [Dataset]. https://www.kaggle.com/datasets/mohamedkhaledidris/data-cleaning-excel-tutorial
    Explore at:
    zip(13023 bytes)Available download formats
    Dataset updated
    Jul 22, 2023
    Authors
    Mohamed Khaled Idris
    Description

    Dataset

    This dataset was created by Mohamed Khaled Idris

    Contents

  6. v

    Global import data of Clean Excel

    • volza.com
    csv
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Clean Excel [Dataset]. https://www.volza.com/trade-data-china/china-exporters-importers-export-import-data-of-clean+excel-to-united-states
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    22 Global import shipment records of Clean Excel with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  7. Cleaned-Data Pakistan's Largest Ecommerce Dataset

    • kaggle.com
    Updated Mar 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    umaraziz97 (2023). Cleaned-Data Pakistan's Largest Ecommerce Dataset [Dataset]. https://www.kaggle.com/datasets/umaraziz97/cleaned-data-pakistans-largest-ecommerce-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    umaraziz97
    Area covered
    Pakistan
    Description

    Pakistan’s largest ecommerce data – Power BI Report

    Dataset Link: pakistan’s_largest_ecommerce_dataset Cleaned Data: Cleaned_Pakistan’s_largest_ecommerce_dataset

    Raw Data:

    Rows: 584525 **Columns: **21

    Process:

    All the raw data transformed and saved in new Excel file Working – Pakistan Largest Ecommerce Dataset

    Processed Data:

    Rows: 582250 Columns: 22 Visualization: Here is the link of Visualization report link: Pakistan-s-largest-ecommerce-data-Power-BI-Data-Visualization-Report

    Conclusion:

    In categories Mobiles & Tables make more money by selling highest no of products and also providing highest amount of discount on products. On the other side Men’s Fashion Category has sell second highest no of products but it can’t generate money with that ratio, may be the prices of individual products is a good reason behind that. And in orders details we experience Mobiles & Tablets have highest no of canceled orders but completed orders are almost same as Men’s Fashion. We have mostly completed orders but have huge no of canceled orders. In payment methods cod has most no of completed order and mostly canceled orders have payment method Easyaxis.

  8. v

    Global export data of Clean Excel

    • volza.com
    csv
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global export data of Clean Excel [Dataset]. https://www.volza.com/exports-india/india-export-data-of-clean+excel
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 14, 2025
    Dataset authored and provided by
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of exporters, Sum of export value, 2014-01-01/2021-09-30, Count of export shipments
    Description

    123 Global export shipment records of Clean Excel with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  9. Project 2:Excel data cleaning & dashboard creation

    • kaggle.com
    zip
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    George M122 (2024). Project 2:Excel data cleaning & dashboard creation [Dataset]. https://www.kaggle.com/datasets/georgem122/project-2excel-data-cleaning-and-dashboard-creation
    Explore at:
    zip(185070 bytes)Available download formats
    Dataset updated
    Jun 30, 2024
    Authors
    George M122
    Description

    Dataset

    This dataset was created by George M122

    Contents

  10. v

    Global Clean Excel buyers list and Global importers directory of Clean Excel...

    • volza.com
    csv
    Updated Nov 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global Clean Excel buyers list and Global importers directory of Clean Excel [Dataset]. https://www.volza.com/buyers-united-states/united-states-importers-buyers-of-clean+excel
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 17, 2025
    Dataset authored and provided by
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of exporters, Count of importers, Count of shipments, Sum of import value, 2014-01-01/2021-09-30
    Description

    8 Active Global Clean Excel buyers list and Global Clean Excel importers directory compiled from actual Global import shipments of Clean Excel.

  11. Cleaned NHANES 1988-2018

    • figshare.com
    txt
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vy Nguyen; Lauren Y. M. Middleton; Neil Zhao; Lei Huang; Eliseu Verly; Jacob Kvasnicka; Luke Sagers; Chirag Patel; Justin Colacino; Olivier Jolliet (2025). Cleaned NHANES 1988-2018 [Dataset]. http://doi.org/10.6084/m9.figshare.21743372.v9
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Vy Nguyen; Lauren Y. M. Middleton; Neil Zhao; Lei Huang; Eliseu Verly; Jacob Kvasnicka; Luke Sagers; Chirag Patel; Justin Colacino; Olivier Jolliet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.

  12. i

    Household Income and Expenditure 2010 - Tuvalu

    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Division (2019). Household Income and Expenditure 2010 - Tuvalu [Dataset]. http://catalog.ihsn.org/catalog/3203
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistics Division
    Time period covered
    2010
    Area covered
    Tuvalu
    Description

    Abstract

    The main objectives of the survey were: - To obtain weights for the revision of the Consumer Price Index (CPI) for Funafuti; - To provide information on the nature and distribution of household income, expenditure and food consumption patterns; - To provide data on the household sector's contribution to the National Accounts - To provide information on economic activity of men and women to study gender issues - To undertake some poverty analysis

    Geographic coverage

    National, including Funafuti and Outer islands

    Analysis unit

    • Household
    • individual

    Universe

    All the private household are included in the sampling frame. In each household selected, the current resident are surveyed, and people who are usual resident but are currently away (work, health, holydays reasons, or border student for example. If the household had been residing in Tuvalu for less than one year: - but intend to reside more than 12 months => The household is included - do not intend to reside more than 12 months => out of scope

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    It was decided that 33% (one third) sample was sufficient to achieve suitable levels of accuracy for key estimates in the survey. So the sample selection was spread proportionally across all the island except Niulakita as it was considered too small. For selection purposes, each island was treated as a separate stratum and independent samples were selected from each. The strategy used was to list each dwelling on the island by their geographical position and run a systematic skip through the list to achieve the 33% sample. This approach assured that the sample would be spread out across each island as much as possible and thus more representative.

    For details please refer to Table 1.1 of the Report.

    Sampling deviation

    Only the island of Niulakita was not included in the sampling frame, considered too small.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    There were three main survey forms used to collect data for the survey. Each question are writen in English and translated in Tuvaluan on the same version of the questionnaire. The questionnaires were designed based on the 2004 survey questionnaire.

    HOUSEHOLD FORM - composition of the household and demographic profile of each members - dwelling information - dwelling expenditure - transport expenditure - education expenditure - health expenditure - land and property expenditure - household furnishing - home appliances - cultural and social payments - holydays/travel costs - Loans and saving - clothing - other major expenditure items

    INDIVIDUAL FORM - health and education - labor force (individu aged 15 and above) - employment activity and income (individu aged 15 and above): wages and salaries, working own business, agriculture and livestock, fishing, income from handicraft, income from gambling, small scale activies, jobs in the last 12 months, other income, childreen income, tobacco and alcohol use, other activities, and seafarer

    DIARY (one diary per week, on a 2 weeks period, 2 diaries per household were required) - All kind of expenses - Home production - food and drink (eaten by the household, given away, sold) - Goods taken from own business (consumed, given away) - Monetary gift (given away, received, winning from gambling) - Non monetary gift (given away, received, winning from gambling)

    Questionnaire Design Flaws Questionnaire design flaws address any problems with the way questions were worded which will result in an incorrect answer provided by the respondent. Despite every effort to minimize this problem during the design of the respective survey questionnaires and the diaries, problems were still identified during the analysis of the data. Some examples are provided below:

    Gifts, Remittances & Donations Collecting information on the following: - the receipt and provision of gifts - the receipt and provision of remittances - the provision of donations to the church, other communities and family occasions is a very difficult task in a HIES. The extent of these activities in Tuvalu is very high, so every effort should be made to address these activities as best as possible. A key problem lies in identifying the best form (questionnaire or diary) for covering such activities. A general rule of thumb for a HIES is that if the activity occurs on a regular basis, and involves the exchange of small monetary amounts or in-kind gifts, the diary is more appropriate. On the other hand, if the activity is less infrequent, and involves larger sums of money, the questionnaire with a recall approach is preferred. It is not always easy to distinguish between the two for the different activities, and as such, both the diary and questionnaire were used to collect this information. Unfortunately it probably wasn?t made clear enough as to what types of transactions were being collected from the different sources, and as such some transactions might have been missed, and others counted twice. The effects of these problems are hopefully minimal overall.

    Defining Remittances Because people have different interpretations of what constitutes remittances, the questionnaire needs to be very clear as to how this concept is defined in the survey. Unfortunately this wasn?t explained clearly enough so it was difficult to distinguish between a remittance, which should be of a more regular nature, and a one-off monetary gift which was transferred between two households.

    Business Expenses Still Recorded The aim of the survey is to measure "household" expenditure, and as such, any expenditure made by a household for an item or service which was primarily used for a business activity should be excluded. It was not always clear in the questionnaire that this was the case, and as such some business expenses were included. Efforts were made during data cleaning to remove any such business expenses which would impact significantly on survey results.

    Purchased goods given away as a gift When a household makes a gift donation of an item it has purchased, this is recorded in section 5 of the diary. Unfortunately it was difficult to know how to treat these items as it was not clear as to whether this item had been recorded already in section 1 of the diary which covers purchases. The decision was made to exclude all information of gifts given which were considered to be purchases, as these items were assumed to have already been recorded already in section 1. Ideally these items should be treated as a purchased gift given away, which in turn is not household consumption expenditure, but this was not possible.

    Some key items missed in the Questionnaire Although not a big issue, some key expenditure items were omitted from the questionnaire when it would have been best to collect them via this schedule. A key example being electric fans which many households in Tuvalu own.

    Cleaning operations

    Consistency of the data: - each questionnaire was checked by the supervisor during and after the collection - before data entry, all the questionnaire were coded - the CSPRo data entry system included inconsistency checks which allow the NSO staff to point some errors and to correct them with imputation estimation from their own knowledge (no time for double entry), 4 data entry operators. - after data entry, outliers were identified in order to check their consistency.

    All data entry, including editing, edit checks and queries, was done using CSPro (Census Survey Processing System) with additional data editing and cleaning taking place in Excel.

    The staff from the CSD was responsible for undertaking the coding and data entry, with assistance from an additional four temporary staff to help produce results in a more timely manner.

    Although enumeration didn't get completed until mid June, the coding and data entry commenced as soon as forms where available from Funafuti, which was towards the end of March. The coding and data entry was then completed around the middle of July.

    A visit from an SPC consultant then took place to undertake initial cleaning of the data, primarily addressing missing data items and missing schedules. Once the initial data cleaning was undertaken in CSPro, data was transferred to Excel where it was closely scrutinized to check that all responses were sensible. In the cases where unusual values were identified, original forms were consulted for these households and modifications made to the data if required.

    Despite the best efforts being made to clean the data file in preparation for the analysis, no doubt errors will still exist in the data, due to its size and complexity. Having said this, they are not expected to have significant impacts on the survey results.

    Under-Reporting and Incorrect Reporting as a result of Poor Field Work Procedures The most crucial stage of any survey activity, whether it be a population census or a survey such as a HIES is the fieldwork. It is crucial for intense checking to take place in the field before survey forms are returned to the office for data processing. Unfortunately, it became evident during the cleaning of the data that fieldwork wasn?t checked as thoroughly as required, and as such some unexpected values appeared in the questionnaires, as well as unusual results appearing in the diaries. Efforts were made to indentify the main issues which would have the greatest impact on final results, and this information was modified using local knowledge, to a more reasonable answer, when required.

    Data Entry Errors Data entry errors are always expected, but can be kept to a minimum with

  13. v

    Global import data of Clean,excel

    • volza.com
    csv
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Clean,excel [Dataset]. https://www.volza.com/imports-india/india-import-data-of-clean-excel-from-italy
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 14, 2025
    Dataset authored and provided by
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    955 Global import shipment records of Clean,excel with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  14. Cocacola-cleaned-excel

    • kaggle.com
    zip
    Updated Aug 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zehra Arshad (2024). Cocacola-cleaned-excel [Dataset]. https://www.kaggle.com/datasets/zehraarshad/cocacola-cleaned-excel
    Explore at:
    zip(16299 bytes)Available download formats
    Dataset updated
    Aug 14, 2024
    Authors
    Zehra Arshad
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Zehra Arshad

    Released under Apache 2.0

    Contents

  15. d

    Correspondence Metadata from the Digital Scholarly Edition of Edvard Munch's...

    • search.dataone.org
    • dataverse.azure.uit.no
    • +1more
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rockenberger, Annika; Sjølie, Loke; Bøe, Hilde (2024). Correspondence Metadata from the Digital Scholarly Edition of Edvard Munch's Writings [Dataset]. http://doi.org/10.18710/TAFUSV
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    DataverseNO
    Authors
    Rockenberger, Annika; Sjølie, Loke; Bøe, Hilde
    Time period covered
    Jan 1, 1874 - Jan 1, 1944
    Description

    The eMunch dataset contains correspondence metadata of 8.527 letters to and from the Norwegian painter Edvard Munch (1863-1944). The dataset is derived from the digital scholarly edition of Edvard Munch's Writings, eMunch.no, edited by Hilde Bøe, The Munch Museum, Oslo. The eMunch dataset is part of the NorKorr - Norwegian Correspondences project that aims to collect metadata from all correspondences in collections of Norwegian academic and cultural heritage institutions, project website on GitHub. A Python script was developed to parse the XML files on eMunch.no and supplementary data files (Excel spreadsheet with updated dates, CSV file with GeoNames IDs for places) and extract the following metadata: sender's name, receiver's name, place name, date, and letter ID in the scholarly edition. These metadata were then converted into the Correspondence Metadata Interchange Format (CMIF). The entire dataset has been integrated into the international CorrespSearch search service for scholarly editions of letters hosted by the Berlin-Brandenburg Academy of Sciences—link to the CorrespSearch website.

  16. Excel Data Cleaning - Montgomery Fleet Inventory

    • kaggle.com
    zip
    Updated Feb 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibrahimryk (2025). Excel Data Cleaning - Montgomery Fleet Inventory [Dataset]. https://www.kaggle.com/datasets/ibrahimryk/excel-data-cleaning-montgomery-fleet-inventory/data
    Explore at:
    zip(10139 bytes)Available download formats
    Dataset updated
    Feb 9, 2025
    Authors
    Ibrahimryk
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains a cleaned version of the Montgomery County Fleet Equipment Inventory.

    ✅ Data Cleaning Steps: - Removed duplicate records - Fixed spelling errors - Merged department names using Flash Fill - Removed unnecessary whitespace - Converted CSV to Excel (.XLSX) format

    📂 Original Dataset Source: Montgomery County Public Dataset

  17. u

    Electrification of Heat Demonstration Project, 2020-2023

    • datacatalogue.ukdataservice.ac.uk
    Updated Dec 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Systems Catapult (2024). Electrification of Heat Demonstration Project, 2020-2023 [Dataset]. http://doi.org/10.5255/UKDA-SN-9050-2
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Energy Systems Catapult
    Area covered
    United Kingdom
    Description

    The heat pump monitoring datasets are a key output of the Electrification of Heat Demonstration (EoH) project, a government-funded heat pump trial assessing the feasibility of heat pumps across the UK’s diverse housing stock. These datasets are provided in both cleansed and raw form and allow analysis of the initial performance of the heat pumps installed in the trial. From the datasets, insights such as heat pump seasonal performance factor (a measure of the heat pump's efficiency), heat pump performance during the coldest day of the year, and half-hourly performance to inform peak demand can be gleaned.

    For the second edition (December 2024), the data were updated to include cleaned performance data collected between November 2020 and September 2023. The only documentation currently available with the study is the Excel data dictionary. Reports and other contextual information can be found on the Energy Systems Catapult website.

    The EoH project was funded by the Department of Business, Energy and Industrial Strategy. From 2023, it is covered by the new Department for Energy Security and Net Zero.

    Data availability

    This study comprises the open-access cleansed data from the EoH project and a summary dataset, available in four zipped files (see the 'Access Data' tab). Users must download all four zip files to obtain the full set of cleansed data and accompanying documentation.

    When unzipped, the full cleansed data comprises 742 CSV files. Most of the individual CSV files are too large to open in Excel. Users should ensure they have sufficient computing facilities to analyse the data.

    The UKDS also holds an accompanying study, SN 9049 Electrification of Heat Demonstration Project: Heat Pump Performance Raw Data, 2020-2023, which is available only to registered UKDS users. This contains the raw data from the EoH project. Since the data are very large, only the summary dataset is available to download; an order must be placed for FTP delivery of the remaining raw data. Other studies in the set include SN 9209, which comprises 30-minute interval heat pump performance data, and SN 9210, which includes daily heat pump performance data.

    The Python code used to cleanse the raw data and then perform the analysis is accessible via the "https://github.com/ES-Catapult/electrification_of_heat" target="_blank"> Energy Systems Catapult Github

  18. n

    Data from: Designing data science workshops for data-intensive environmental...

    • data.niaid.nih.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    zip
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allison Theobold; Stacey Hancock; Sara Mannheimer (2020). Designing data science workshops for data-intensive environmental science research [Dataset]. http://doi.org/10.5061/dryad.7wm37pvp7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 8, 2020
    Dataset provided by
    California State Polytechnic University
    Montana State University
    Authors
    Allison Theobold; Stacey Hancock; Sara Mannheimer
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Over the last 20 years, statistics preparation has become vital for a broad range of scientific fields, and statistics coursework has been readily incorporated into undergraduate and graduate programs. However, a gap remains between the computational skills taught in statistics service courses and those required for the use of statistics in scientific research. Ten years after the publication of "Computing in the Statistics Curriculum,'' the nature of statistics continues to change, and computing skills are more necessary than ever for modern scientific researchers. In this paper, we describe research on the design and implementation of a suite of data science workshops for environmental science graduate students, providing students with the skills necessary to retrieve, view, wrangle, visualize, and analyze their data using reproducible tools. These workshops help to bridge the gap between the computing skills necessary for scientific research and the computing skills with which students leave their statistics service courses. Moreover, though targeted to environmental science graduate students, these workshops are open to the larger academic community. As such, they promote the continued learning of the computational tools necessary for working with data, and provide resources for incorporating data science into the classroom.

    Methods Surveys from Carpentries style workshops the results of which are presented in the accompanying manuscript.

    Pre- and post-workshop surveys for each workshop (Introduction to R, Intermediate R, Data Wrangling in R, Data Visualization in R) were collected via Google Form.

    The surveys administered for the fall 2018, spring 2019 academic year are included as pre_workshop_survey and post_workshop_assessment PDF files. 
    The raw versions of these data are included in the Excel files ending in survey_raw or assessment_raw.
    
      The data files whose name includes survey contain raw data from pre-workshop surveys and the data files whose name includes assessment contain raw data from the post-workshop assessment survey.
    
    
    The annotated RMarkdown files used to clean the pre-workshop surveys and post-workshop assessments are included as workshop_survey_cleaning and workshop_assessment_cleaning, respectively. 
    The cleaned pre- and post-workshop survey data are included in the Excel files ending in clean. 
    The summaries and visualizations presented in the manuscript are included in the analysis annotated RMarkdown file.
    
  19. o

    Data for 2022 Solar Paces Conference Paper "Dry-Cooled Rankine Cycles"

    • explore.openaire.eu
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Viktoria Illyes (2023). Data for 2022 Solar Paces Conference Paper "Dry-Cooled Rankine Cycles" [Dataset]. http://doi.org/10.5281/zenodo.8006757
    Explore at:
    Dataset updated
    Jun 5, 2023
    Authors
    Viktoria Illyes
    Description

    Data available upon request: Excel file with results (for figures) Excel file with VLE results (exported from Aspen) Excel files with summary of Aspen cycle calculations Case A Case B Aspen files of cycle calculations Case A, B; Design, Off-design; Temperatures 20-54 °C Matlab files framework file file for calculating VLE file for creating diagrams Matlab data fitted models for VLE calculation of CO2+C6F6

  20. u

    Data from: Survey data from the Australian Marine Debris Initiative

    • research.usc.edu.au
    • researchdata.edu.au
    csv
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidi Tait; Jodi Jones; Caitlin Smith; Kathy Townsend, Survey data from the Australian Marine Debris Initiative [Dataset]. https://research.usc.edu.au/esploro/outputs/dataset/Survey-data-from-the-Australian-Marine/991016398702621
    Explore at:
    csv(7054018 bytes)Available download formats
    Dataset provided by
    University of the Sunshine Coast
    Authors
    Heidi Tait; Jodi Jones; Caitlin Smith; Kathy Townsend
    Time period covered
    2024
    Description

    Survey data from the Australian Marine Debris Initiative and the result of spatial analysis from multiple creative commons datasets. Data consists of: • Spatial Data Queensland Coastline – Event summaries within an Excel data table and shapefile • All years • Number of Items removed, Weight volunteers, Volume, Distance, Latitude and Longitude. • Contributing organisation files table/ sites • Environmental, physical and biological variables associated with the closest catchment to each debris survey. TBF has made all reasonable efforts to ensure that the information in the Custom Dataset is accurate. TBF will not be held responsible: • for the way these data are used by the Entity for their Reports; • for any errors that may be contained in the Custom Dataset; or • any direct or indirect damage the use of the Custom Dataset may cause. Data collected by TBF comes from citizen science initiatives and is taken at face value from contributors with each entry being vetted and periodic checks being made to maintain the integrity of the overall dataset. Some clean-up data has been extrapolated by data collectors. Some weight and distance details have not been provided by contributors. The data was collected by various organisations and individuals in clean-up events at their chosen locations where man-made items greater than 5mm were removed from the beach, and sorted, counted and recorded on data sheets, using CyberTracker software devices or the AMDI mobile application. Items were identified according to the method laid out in the TBF Marine Debris Identification Manual in which items are grouped according to their material categories (the manual is available on the TBF website). The length of beach cleaned is at the discretion of the clean-up group and the total weight of items removed is either weighed with handheld scales or estimated.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177

Data Cleaning Sample

Explore at:
167 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 13, 2023
Dataset provided by
Borealis
Authors
Rong Luo
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Sample data for exercises in Further Adventures in Data Cleaning.

Search
Clear search
Close search
Google apps
Main menu