No further editions of this report will be published as it has been replaced by the Agri-climate report 2021.
This annual publication brings together existing statistics on English agriculture in order to help inform the understanding of agriculture and greenhouse gas emissions. The publication summarises available statistics that relate directly and indirectly to emissions and includes statistics on farmer attitudes to climate change mitigation and uptake of mitigation measures. It also incorporates statistics emerging from developing research and provides some international comparisons. It is updated when sufficient new information is available.
Next update: see the statistics release calendar
For further information please contact:
Agri.EnvironmentStatistics@defra.gov.uk
https://www.twitter.com/@defrastats" class="govuk-link">Twitter: @DefraStats
According to an ********** survey on climate change conducted in the United States, approximately ** percent of the respondents claimed they heard about global warming in the media at least once a week. Just ***** percent of respondents stated that they had never heard about global warming in the media.
This folder, titled "Data," contains the MATLAB code, final products, tables, and figures used in Parker, L.E., Zhang, N., Abatzoglou, J.T. et al. A variety-specific analysis of climate change effects on California winegrapes. Int J Biometeorol 68, 1559–1571 (2024). https://doi.org/10.1007/s00484-024-02684-8 Data Collection: Climatological data (daily maximum and minimum temperatures, precipitation, and reference evapotranspiration) were obtained from the gridMET dataset for the contemporary period (1991-2020) and from 20 global climate models (GCMs) for the mid-21st century (2040-2069) under RCP 4.5.Phenology Modeling: Variety-specific phenology models were developed using published climatic thresholds to assess chill accumulation, budburst, flowering, veraison, and maturity stages for the six winegrape varieties.Agroclimatic Metrics: Fourteen viticulturally important agroclimatic metrics were calculated, including Growing Degree Days (GDD), Cold Hardiness, Chilling Degree Days (CDD), Frost Damage Days (FDD), and others.Analysis Tools: MATLAB was used for data processing, analysis, and visualization. The MATLAB code provided in this dataset includes scripts for analyzing climate data, running phenology models, and generating visualizations.MATLAB Code: Scripts and functions used for data analysis and modeling.Processed Data: Results from phenology and agroclimatic analyses, including the projected changes in phenological stages and climate metrics for the selected varieties and AVAs.Tables: Detailed results of phenological changes and climate metrics, presented in a clear and structured format.Figures: Visual representations of the data and results, including charts and maps illustrating the impacts of climate change on winegrape development stages and agroclimatic conditions. Research Description: This study investigates the impacts of climate change on the phenology and agroclimatic metrics of six winegrape varieties (Cabernet Sauvignon, Chardonnay, Pinot Noir, Zinfandel, Pinot Gris, Sauvignon Blanc) across multiple California American Viticultural Areas (AVAs). Using climatological data and phenology models, the research quantifies changes in key development stages and viticulturally important climate metrics for the mid-21st century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This work combines global warming data from various publications and datasets, creating a new dataset covering a very long period - from the year 1 to 2100.
The dataset created in this work separates the actual records for the 1-2024 period from the forecast for the 2020-2100 period.
The work includes separate sets for land+ocean (GW), land only (GWL), and ocean only (GWO).
The online dataset is available on the site nowagreen.com.
According to an April 2024 survey on climate change conducted in the United States, some ** percent of the respondents claimed they believed that global warming was happening. A much smaller share, ** percent, believed global warming was not happening.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw figures providedRaw figures 1-4 accompanying paper on transient and equilibrium climate change. The scripts used to generate these figures may be found here: https://zenodo.org/record/3471030#.XcDSNTMzbIV. The underlying CMIP5 data are available in multiple repostitories (e.g. https://esgf-node.llnl.gov/projects/esgf-llnl/). The underlying population and GDP data used in Figures 2 and 4 are freely accessible here: http://www.cger.nies.go.jp/gcp/population-and-gdp.html.Example source data providedSource data for Figures 4a and 4b showing maps of probability ratios in netCDF format.Intermediate source data for years selected from each RCP8.5 model simulation equivalent to the level of global warming in the 23rd century in extended RCP4.5 simulations for the same model.For further data or data in different formats please contact andrew.king@unimelb.edu.au
The 20th wave of PAT data was collected between 14 and 18 December 2016 using face-to-face in-home interviews with a representative sample of 2,134 households in the UK. Full details of the methodology are provided in the PAT survey technical note.
On 14 July 2016, the Department of Energy and Climate Change (DECC) merged with the Department for Business, Innovation and Skills (BIS), to form the Department for Business, Energy and Industrial Strategy (BEIS). As such, the survey has now been rebranded as BEIS’s Energy and Climate Change Public Attitudes Tracker (PAT).
BEIS is committed to continuous improvement of our statistics. We are keen to understand more about the people and organisations that use our statistics, as well as the uses of our data. We therefore welcome user input on our statistics.
Please let us know about your experiences of using our statistics, whether there are any statistical products that you regularly use and if there are any elements of the statistics (eg presentation, commentary) that you feel could be altered or improved.
Comments should be e-mailed to energy.stats@beis.gov.uk.
This data package contains information on atmospheric CO2 trends, surface temperature, absolute sea levels, surface temperature analysis, average mass balance of glaciers and temperature anomalies all at a global level.
Climate change is viewed as a major concern globally, with around 90 percent of respondents to a 2023 survey viewing it as a serious threat to humanity. developing nations often show the highest levels of concern, like in the Philippines where 96.7 percent of respondents acknowledge it as a serious threat. Rising emissions despite growing awareness Despite widespread acknowledgment of climate change, global greenhouse gas emissions continue to climb. In 2023, emissions reached a record high of 53 billion metric tons of carbon dioxide equivalent, marking a 60 percent increase since 1990. The power industry remains the largest contributor, responsible for 28 percent of global emissions. This ongoing rise in emissions has significant implications for global climate patterns and environmental stability. Temperature anomalies reflect warming trend In 2024, the global land and ocean surface temperature anomaly reached 1.29 degrees Celsius above the 20th-century average, the highest recorded deviation to date. This consistent pattern of positive temperature anomalies, observed since the 1980s, highlights the long-term warming effect of increased greenhouse gas accumulation in the atmosphere. The warmest years on record have all occurred within the past decade.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
The Climate Change Mitigation in Agriculture Statistics publication brings together statistics on agriculture which track progress on greenhouse gas (GHG) performance. The publication summarises available evidence and interprets it in the context of GHGs. It also incorporates emerging statistics which inform understanding of GHGs in agriculture as research.
Source agency: Environment, Food and Rural Affairs
Designation: Official Statistics not designated as National Statistics
Language: English
Alternative title: Greenhouse gases from agriculture
(1) This is the dataset simulated by high resolution atmospheric model of which horizontal resolution is 60km-mesh over the globe (GCM), and 20km over Japan and surroundings (RCM), respetively. The climate of the latter half of the 20th century is simulated for 6000 years (3000 years for the Japan area), and the climates 1.5 K (*2), 2 K (*1) and 4 K warmer than the pre-industrial climate are simulated for 1566, 3240 and 5400 years, respectivley, to see the effect of global warming. (2) Huge number of ensembles enable not only with statistics but also with high accuracy to estimate the future change of extreme events such as typoons and localized torrential downpours. In addtion, this dataset provides the highly reliable information on the impact of natural disasters due to climate change on future societies. (3) This dataset provides the climate projections which adaptations against global warming are based on in various fields, for example, disaster prevention, urban planning, environmetal protection, and so on. It would realize the global warming adaptations consistent not only among issues but also among regions. (4) Total size of this dataset is 3 PB (3 x the 15th power of 10 bytes).
(*1) Datasets of the climates 2K warmer than the pre-industorial climate is available on 10th August, 2018. (*2) Datasets of the climates 1.5K warmer than the pre-industorial climate is available on 8th February, 2022.
By 2099, climate change could be one of the leading causes of death in the world. With an increase of 3.5 degrees Celsius in mean surface temperature compared to a pre-industrial average, it was estimated that around 45 people per 100,000 population could die in that year due to effects caused by climate change. Only death rates from heart disease and strokes would surpass that value.
Financial overview and grant giving statistics of Global Climate Change Foundation
Take urgent action to combat climate change and its impacts : Climate change is a critical development challenge for the region. The key threats are sea level rise, saltwater intrusion of freshwater lenses and ocean acidification and their impact on people, water and food security, livelihoods, and the Pacific region’s biodiversity and culture. Climate induced mobility and migration across the region may be a required adaptation strategy; Goal 13 indicators still require development for effective monitoring to take place.
Find more Pacific data on PDH.stat.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Data description
The FAOSTAT Temperature Change domain disseminates statistics of mean surface temperature change by country, with annual updates. The current dissemination covers the period 1961–2023. Statistics are available for monthly, seasonal and annual mean temperature anomalies, i.e., temperature change with respect to a baseline climatology, corresponding to the period 1951–1980. The standard deviation of the temperature change of the baseline methodology is also available. Data are based on the publicly available GISTEMP data, the Global Surface Temperature Change data distributed by the National Aeronautics and Space Administration Goddard Institute for Space Studies (NASA-GISS).
Statistical concepts and definitions
Statistical standards: Data in the Temperature Change domain are not an explicit SEEA variable. Nonetheless, country and regional calculations employ a definition of “Land area” consistent with SEEA Land Use definitions, specifically SEEA CF Table 5.11 “Land Use Classification” and SEEA AFF Table 4.8, “Physical asset account for land use.” The Temperature Change domain of the FAOSTAT Agri-Environmental Indicators section is compliant with the Framework for the Development of Environmental Statistics (FDES 2013), contributing to FDES Component 1: Environmental Conditions and Quality, Sub-component 1.1: Physical Conditions, Topic 1.1.1: Atmosphere, climate and weather, Core set/ Tier 1 statistics a.1.
Statistical unit: Countries and Territories.
Statistical population: Countries and Territories.
Reference area: Area of all the Countries and Territories of the world. In 2019: 190 countries and 37 other territorial entities.
Code - reference area: FAOSTAT, M49, ISO2 and ISO3 (http://www.fao.org/faostat/en/#definitions). FAO Global Administrative Unit Layer (GAUL National level – reference year 2014. FAO Geospatial data repository GeoNetwork. Permanent address: http://www.fao.org:80/geonetwork?uuid=f7e7adb0-88fd-11da-a88f-000d939bc5d8.
Code - Number of countries/areas covered: In 2019: 190 countries and 37 other territorial entities.
Time coverage: 1961-2023
Periodicity: Monthly, Seasonal, Yearly
Base period: 1951-1980
Unit of Measure: Celsius degrees °C
Reference period: Months, Seasons, Meteorological year
Documentation on methodology: Details on the methodology can be accessed at the Related Documents section of the Temperature Change (ET) domain in the Agri-Environmental Indicators section of FAOSTAT.
Quality documentation: For more information on the methods, coverage, accuracy and limitations of the Temperature Change dataset please refer to the NASA GISTEMP website: https://data.giss.nasa.gov/gistemp/
Source: http://www.fao.org/faostat/en/#data/ET/metadata
Climate change is one of the important issues that face the world in this technological era. The best proof of this situation is the historical temperature change. You can investigate if any hope there is for stopping global warming :)
Can you find any correlation between temperature change and any other variable? (Using ISO3 codes for merging any other countries' data sets possible.)
Prediction of temperature change: there is also an overall world temperature change in the country list as 'World'.
This dataset has all the summary tables for the Figures and supplementary information in the Phelan et al. publication.
https://www.imf.org/external/terms.htmhttps://www.imf.org/external/terms.htm
Regional estimates are presented by industry and household for four gases - carbon dioxide, methane, nitrous oxide, and F-gases. The F-gases constitute of hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride and nitrogen trifluoride.Emissions are presented in Million metric tons of CO₂ equivalent (MTCO2e).Sources: Organisation for Economic Co-operation and Development (2022), Air Emission Accounts, OECD.Stat https://stats.oecd.org/Index.aspx?DataSetCode=AEA; Organisation for Economic Co-operation and Development (2022), Air Emission Accounts – OECD Estimates, OECD.Stat https://stats.oecd.org/Index.aspx?DataSetCode=OECD-AEA; Organisation for Economic Co-operation and Development (2022), Quarterly National Accounts, OECD.Stat https://stats.oecd.org/Index.aspx?DataSetCode=QNA%20; United Nations Framework Convention on Climate Change (UNFCCC). 2022. Greenhouse Gas Inventory Data - Detailed data by Party - Annex I. https://di.unfccc.int/detailed_data_by_party. Copyright 2022 United Nations Framework Convention on Climate Change; Crippa, M., Guizzardi, D., Solazzo, E., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Olivier, J., Grassi, G., Rossi, S. and Vignati, E., GHG emissions of all world countries, EUR 30831 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-41547-3, doi:10.2760/074804, JRC126363; IEA (2022) Monthly electricity data, www.iea.org/statistics, All rights reserved; as modified by IMF; IEA (2022) Monthly oil statistics, www.iea.org/statistics, All rights reserved; as modified by IMF; IEA (2022) Monthly gas statistics, www.iea.org/statistics, All rights reserved; as modified by IMF; Country Authorities; IMF staff calculations.Category: Greenhouse Gas (GHG) EmissionsData series: Quarterly greenhouse gas (GHG) air emissions accountsMetadata:Quarterly greenhouse gas air emissions from production and household consumption are adjusted for seasonality. SEEA Air Emissions Accounts from official country sources have been accessed via the OECD Air Emissions Accounts database.Methodology:The OECD Air Emission Accounts database presents estimates that align with the classifications, concepts and methods consistent with the System of Environmental-Economic Accounting Central Framework (SEEA-CF). In addition to the OECD database, the estimation procedure uses the emission inventories sourced from UNFCCC, EDGAR and CAIT. Correspondence tables and industry output shares are used to concord the UNFCCC, EDGAR and CAIT estimates to their corresponding industrial and household activities. Annual estimates of greenhouse gas emissions by industry and for households are trended forward using the latest emission data available. They are temporally disaggregated using the best temporal aggregation method in conjunction with seasonally adjusted sub-annual indicators of economic activity highly correlated with the annual estimates, under a prior assumption on linkages with the annual estimates.Quarterly estimates for the most recent period (for which annual estimates do not exist) are extrapolated using the timelier sub-annual indicators.Disclaimer:The estimates are considered experimental. The sources and methods used to compile these estimates are still in development. Users are encouraged to examine the documentation, metadata, and sources associated with the data. User feedback on the fit-for-use of this product and whether the various dimensions of the product are appropriate is welcome.
The 25th wave of PAT data was collected between 28 March and 6 April 2018 using face-to-face in-home interviews with a representative sample of 2,102 households in the UK. Full details of the methodology are provided in the technical note.
The United States contributed roughly 17 percent of global warming from 1851 to 2023. By contrast, India contributed five percent of warming during this period, despite the country having a far larger population than the United States. In total, G20 countries have contributed approximately three-quarters of global warming to date, while the least developed countries are responsible for just six percent.
Financial overview and grant giving statistics of Climate Change Resources
No further editions of this report will be published as it has been replaced by the Agri-climate report 2021.
This annual publication brings together existing statistics on English agriculture in order to help inform the understanding of agriculture and greenhouse gas emissions. The publication summarises available statistics that relate directly and indirectly to emissions and includes statistics on farmer attitudes to climate change mitigation and uptake of mitigation measures. It also incorporates statistics emerging from developing research and provides some international comparisons. It is updated when sufficient new information is available.
Next update: see the statistics release calendar
For further information please contact:
Agri.EnvironmentStatistics@defra.gov.uk
https://www.twitter.com/@defrastats" class="govuk-link">Twitter: @DefraStats