100+ datasets found
  1. Monthly Climatic Data for the World

    • ncei.noaa.gov
    • data.cnra.ca.gov
    • +4more
    html
    Updated May 2, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (NCEI) (2013). Monthly Climatic Data for the World [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01037
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 2, 2013
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Time period covered
    1948 - Present
    Area covered
    Description

    Publication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations worldwide, and monthly mean upper air temperatures, dew point depressions, and wind velocities for approximately 500 observing sites.

  2. H

    Climate Data Download for NOCA Observatory

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Mar 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Castronova (2017). Climate Data Download for NOCA Observatory [Dataset]. https://www.hydroshare.org/resource/0c184e9af24f424ca7be2cd40f9006a0
    Explore at:
    zip(432.0 MB)Available download formats
    Dataset updated
    Mar 22, 2017
    Dataset provided by
    HydroShare
    Authors
    Anthony Castronova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This a download of VIC fluxesw data and vizualization processing results from the Daily_VIC_1915_2011 (Livneh et al. 2013); Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer, and D.P. Lettenmaier, 2013: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, Journal of Climate, 26, 9384–9392.

  3. d

    Python code used to download gridMET climate data for public-supply water...

    • catalog.data.gov
    • data.usgs.gov
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Python code used to download gridMET climate data for public-supply water service areas [Dataset]. https://catalog.data.gov/dataset/python-code-used-to-download-gridmet-climate-data-for-public-supply-water-service-areas
    Explore at:
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This child item describes Python code used to retrieve gridMET climate data for a specific area and time period. Climate data were retrieved for public-supply water service areas, but the climate data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the climate data collector code were used as input feature variables in the public supply delivery and water use machine learning models. This page includes the following file: climate_data_collector.zip - a zip file containing the climate data collector Python code used to retrieve climate data and a README file.

  4. d

    Data from: Dynamically Downscaled Hourly Future Weather Data with 12-km...

    • catalog.data.gov
    • data.openei.org
    • +3more
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Argonne National Laboratory (2025). Dynamically Downscaled Hourly Future Weather Data with 12-km Resolution Covering Most of North America [Dataset]. https://catalog.data.gov/dataset/dynamically-downscaled-hourly-future-weather-data-with-12-km-resolution-covering-most-of-n
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Argonne National Laboratory
    Area covered
    North America
    Description

    This is an hourly future weather dataset for energy modeling applications. The dataset is primarily based on the output of a regional climate model (RCM), i.e., the Weather Research and Forecasting (WRF) model version 3.3.1. The WRF simulations are driven by the output of a general circulation model (GCM), i.e., the Community Climate System Model version 4 (CCSM4). This dataset is in the EPW format, which can be read or translated by more than 25 building energy modeling programs (e.g., EnergyPlus, ESP-r, and IESVE), energy system modeling programs (e.g., System Advisor Model (SAM)), indoor air quality analysis programs (e.g., CONTAM), and hygrothermal analysis programs (e.g., WUFI). It contains 13 weather variables, which are the Dry-Bulb Temperature, Dew Point Temperature, Relative Humidity, Atmospheric Pressure, Horizontal Infrared Radiation Intensity from Sky, Global Horizontal Irradiation, Direct Normal Irradiation, Diffuse Horizontal Irradiation, Wind Speed, Wind Direction, Sky Cover, Albedo, and Liquid Precipitation Depth. This dataset provides future weather data under two emissions scenarios - RCP4.5 and RCP8.5 - across two 10-year periods (2045-2054 and 2085-2094). It also includes simulated historical weather data for 1995-2004 to serve as the baseline for climate impact assessments. We strongly recommend using this built-in baseline rather than external sources (e.g., TMY3) for two key reasons: (1) it shares the same model grid as the future projections, thereby minimizing geographic-averaging bias, and (2) both historical and future datasets were generated by the same RCM, so their differences yield anomalies largely free of residual model bias. This dataset offers a spatial resolution of 12 km by 12 km with extensive coverage across most of North America. Due to the enormous size of the entire dataset, in the first stage of its distribution, we provide weather data for the centroid of each Public Use Microdata Area (PUMA), excluding Hawaii. PUMAs are non-overlapping, statistical geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than 100,000 people each. The 2,378 PUMAs as a whole cover the entirety of the U.S. The weather data can be utilized alongside the large-scale energy analysis tools, ResStock and ComStock, developed by National Renewable Energy Laboratory, whose smallest resolution is at the PUMA scale. The authors observed an anomalous warming signal over the Great Plains in the end-of-century (2085 - 2094) RCP4.5 time slice. This anomaly is absent in the mid-century slice (2045 - 2054) under RCP4.5 and in both the mid- (2045 - 2054) and end-of-century (2085 - 2094) slices under RCP8.5. Consequently, we recommend that users exercise particular caution when using the RCP4.5 2085-2094 data, especially for analyses involving the Great Plains region.

  5. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    netcdf
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Jan 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  6. O

    Weather Data

    • data.open-power-system-data.org
    csv, sqlite
    Updated Sep 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Pfenninger; Iain Staffell (2020). Weather Data [Dataset]. http://doi.org/10.25832/weather_data/2020-09-16
    Explore at:
    csv, sqliteAvailable download formats
    Dataset updated
    Sep 16, 2020
    Dataset provided by
    Open Power System Data
    Authors
    Stefan Pfenninger; Iain Staffell
    Time period covered
    Jan 1, 1980 - Dec 31, 2019
    Variables measured
    utc_timestamp, AT_temperature, BE_temperature, BG_temperature, CH_temperature, CZ_temperature, DE_temperature, DK_temperature, EE_temperature, ES_temperature, and 75 more
    Description

    Hourly geographically aggregated weather data for Europe. This data package contains radiation and temperature data, at hourly resolution, for Europe, aggregated by Renewables.ninja from the NASA MERRA-2 reanalysis. It covers the European countries using a population-weighted mean across all MERRA-2 grid cells within the given country.

  7. Daily Weather Records

    • catalog.data.gov
    • data.cnra.ca.gov
    • +3more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact); DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (Point of Contact) (2023). Daily Weather Records [Dataset]. https://catalog.data.gov/dataset/daily-weather-records1
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.

  8. NOAA Monthly U.S. Climate Divisional Database (NClimDiv)

    • ncei.noaa.gov
    • data.noaa.gov
    kmz
    Updated Mar 1, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vose, Russell S.; Applequist, Scott; Squires, Mike; Durre, Imke; Menne, Matthew J.; Williams, Claude N., Jr.; Fenimore, Chris; Gleason, Karin; Arndt, Derek (2014). NOAA Monthly U.S. Climate Divisional Database (NClimDiv) [Dataset]. http://doi.org/10.7289/v5m32str
    Explore at:
    kmzAvailable download formats
    Dataset updated
    Mar 1, 2014
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    Vose, Russell S.; Applequist, Scott; Squires, Mike; Durre, Imke; Menne, Matthew J.; Williams, Claude N., Jr.; Fenimore, Chris; Gleason, Karin; Arndt, Derek
    Time period covered
    Jan 1, 1895 - Present
    Area covered
    Description

    In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set. In January 2025, the National Centers for Environmental Information (NCEI) began summarizing the State of the Climate for Hawaii. This was made possible through a collaboration between NCEI and the University of Hawaii/Hawaii Climate Data Portal and completes a long-standing gap in NCEI's ability to characterize the State of the Climate for all 50 states. NCEI maintains monthly statewide, divisional, and gridded average temperature, maximum temperatures (highs), minimum temperature (lows) and precipitation data for Hawaii over the period 1991-2025. As of November 2018, NClimDiv includes county data and additional inventory files In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set.

    As of November 2018, NClimDiv includes county data and additional inventory files.

  9. o

    Kenya Climate Data | 1991-2016 - Dataset - openAFRICA

    • open.africa
    Updated Nov 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Kenya Climate Data | 1991-2016 - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/kenya-climate-data-1991-2016
    Explore at:
    Dataset updated
    Nov 29, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kenya
    Description

    This is data on the Rainfall(mm) and Temperature(Celsius) of Kenya between the years 1991 to 2016. This data was collected by the climate knowledge portal by the World Bank.

  10. U.S. Local Climatological Data (LCD)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +4more
    Updated Oct 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (Point of Contact) (2022). U.S. Local Climatological Data (LCD) [Dataset]. https://catalog.data.gov/dataset/u-s-local-climatological-data-lcd2
    Explore at:
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    Local Climatological Data (LCD) are summaries of climatological conditions from airport and other prominent weather stations managed by NWS, FAA, and DOD. The product includes hourly observations and associated remarks, and a record of hourly precipitation for the entire month. Also included are daily summaries summarizing temperature extremes, degree days, precipitation amounts and winds. The tabulated monthly summaries in the product include maximum, minimum, and average temperature, temperature departure from normal, dew point temperature, average station pressure, ceiling, visibility, weather type, wet bulb temperature, relative humidity, degree days (heating and cooling), daily precipitation, average wind speed, fastest wind speed/direction, sky cover, and occurrences of sunshine, snowfall and snow depth. The source data is global hourly (DSI 3505) which includes a number of quality control checks.

  11. Global Surface Summary of the Day - GSOD

    • ncei.noaa.gov
    • data.noaa.gov
    • +3more
    csv
    Updated Aug 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce (2023). Global Surface Summary of the Day - GSOD [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 3, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Time period covered
    Jan 1, 1929 - Present
    Area covered
    Description

    Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.

  12. o

    District Wise Climate Data for Nepal

    • opendatanepal.com
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). District Wise Climate Data for Nepal [Dataset]. https://opendatanepal.com/dataset/district-wise-daily-climate-data-for-nepal
    Explore at:
    Dataset updated
    Jul 18, 2025
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Nepal
    Description

    The dataset contains data on Nepal's climate on different parameters. These data were obtained from the NASA Langley Research Center (LaRC) POWER Project funded through the NASA Earth Science/Applied Science Program and extracted using NASA's power access API.

  13. Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR),...

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +4more
    html
    Updated Feb 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adler, Robert; Wang, Jian-Jian; Sapiano, Matthew; Huffman, George; Chiu, Long; Xie, Ping-Ping; Ferraro, Ralph; Schneider, Udo; Becker, Andreas; Bolvin, David; Nelkin, Eric; Gu, Guojun (2017). Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly) [Dataset]. http://doi.org/10.7289/v56971m6
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 21, 2017
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    Adler, Robert; Wang, Jian-Jian; Sapiano, Matthew; Huffman, George; Chiu, Long; Xie, Ping-Ping; Ferraro, Ralph; Schneider, Udo; Becker, Andreas; Bolvin, David; Nelkin, Eric; Gu, Guojun
    Time period covered
    Jan 1, 1979 - Present
    Area covered
    Description

    The Global Precipitation Climatology Project (GPCP) consists of monthly satellite-gauge and associated precipitation error estimates and covers the period January 1979 to the present. The general approach is to combine the precipitation information available from each of several satellite and in situ sources into a final merged product, taking advantage of the strengths of each data type: passive Microwave estimates are based on SSMI/SSMIS data; infrared precipitation estimates are included, using GOES data and POES data; as well as other low earth orbit data and insitu observations. Data are provided on a 2.5 degree grid.

  14. Climate Data: National Climate Centre, Bureau of Meteorology

    • researchdata.edu.au
    • data.gov.au
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Meteorology; Australian Institute of Marine Science (AIMS) (2025). Climate Data: National Climate Centre, Bureau of Meteorology [Dataset]. https://researchdata.edu.au/climate-data-national-bureau-meteorology/677917
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Authors
    Bureau of Meteorology; Australian Institute of Marine Science (AIMS)
    Area covered
    Description

    Three datasets containing climate data, compiled in April 2011, have been purchased from the Bureau of Meteorology. These datasets include observations from stations in all Australian States and Territories. Each dataset includes a file which gives details of the stations where observations were made and a file describing the data. AWS Hourly Data contains hourly records of precipitation, air temperature, wet bulb temperature, dew point temperature, relative humidity, vapour pressure, saturated vapour pressure, wind speed, wind direction, maximum wind gust, mean sea level pressure, station level pressure. Each record for each parameter is also flagged to indicate the quality of the value.Synoptic Data contains records of air temperature, dew point temperature, wet bulb temperature, relative humidity, wind speed, wind direction, mean sea level pressure, station level pressure, QNH pressure, vapour pressure and saturated vapour pressure. Each record for each parameter is also flagged to indicate the quality of the value.Daily Rainfall Data contains records precipitation in the 24 hours before 9 am, number of days of rain within the days of accumulation and the accumulated number of days over which the precipitation was measured. Each precipitation record is flagged to indicate the quality of the value.

  15. k

    Saudi Arabia Hourly Climate Integrated Surface Data

    • datasource.kapsarc.org
    • data.kapsarc.org
    • +1more
    Updated Aug 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Saudi Arabia Hourly Climate Integrated Surface Data [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-hourly-weather-data/
    Explore at:
    Dataset updated
    Aug 26, 2025
    Area covered
    Saudi Arabia
    Description

    Saudi Arabia hourly climate integrated surface data with the below data observations, WindSky conditionVisibilityAir temperatureDewSea level pressureNote: The dataset will contain the last 5 years hourly data, however, check the attachments section in this dataset if you need historical data.

  16. North American Dataset

    • ncei.noaa.gov
    • data.cnra.ca.gov
    • +1more
    Updated Oct 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Menne, Matthew J.; Williams, Claude N. Jr.; Korzeniewski, Bryant (2017). North American Dataset [Dataset]. http://doi.org/10.7289/v5348hn5
    Explore at:
    Dataset updated
    Oct 2017
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    Menne, Matthew J.; Williams, Claude N. Jr.; Korzeniewski, Bryant
    Time period covered
    Jan 1, 1850 - Present
    Area covered
    Description

    The North American Dataset contains sets of Maximum, Minimum and Average Temperature data and Precipitation data that are either (1) raw (non-adjusted though flagged for possible quality issues), (2) adjusted due to time of observation bias (TOB) or (3) put through the Pairwise Homogenization Algorithm (PHA). These files contain North American stations and its data are measured in hundredths of degrees Celsius (without decimal place) for temperature and tenths of millimeters (without decimal place) for Precipitation. Each file includes the entire available Period of Record.

  17. Data from: Standard Quality Controlled Research Weather Data – USDA-ARS,...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Standard Quality Controlled Research Weather Data – USDA-ARS, Bushland, Texas [Dataset]. https://catalog.data.gov/dataset/standard-quality-controlled-research-weather-data-usda-ars-bushland-texas-f4f0b
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Area covered
    Texas, Bushland
    Description

    [ NOTE – 2022/05/06: this dataset supersedes the earlier versions https://doi.org/10.15482/USDA.ADC/1482548 and https://doi.org/10.15482/USDA.ADC/1526329 ]. This dataset contains 15-minute mean weather data from the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) for all days in each year. The data are from sensors placed at 2-m height over a level, grass surface mowed to not exceed 12 cm height and irrigated and fertilized to maintain reference conditions as promulgated by Allen et al. (2005, 1998). Irrigation was by surface flood in 1989 through 1994, and by subsurface drip irrigation after 1994. Sensors were replicated and intercompared between replicates and with data from nearby weather stations, which were sometimes used for gap filling. Quality control and assurance methods are described by Evett et al. (2018). Data from a duplicate sensor were used to fill gaps in data from the primary sensor using appropriate regression relationships. Gap filling was also accomplished using sensors deployed at one of the four large weighing lysimeters immediately west of the weather station, or using sensors at other nearby stations when reliable regression relationships could be developed. The primary paper describes details of the sensors used and methods of testing, calibration, inter-comparison, and use. The weather data include air temperature (C) and relative humidity (%), wind speed (m/s), solar irradiance (W m-2), barometric pressure (kPa), and precipitation (rain and snow in mm). Because the large (3 m by 3 m surface area) weighing lysimeters are better rain gages than are tipping bucket gages, the 15-minute precipitation data are derived for each lysimeter from changes in lysimeter mass. The land slope is <0.3% and flat. The mean annual precipitation is ~470 mm, the 20-year pan evaporation record indicates ~2,600 mm Class A pan evaporation per year, and winds are typically from the South and Southwest. The climate is semi-arid with ~70% (350 mm) of the annual precipitation occurring from May to September, during which period the pan evaporation averages ~1520 mm. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. The data have utility for testing simulation models of crop ET, growth, and yield and have been used by the Agricultural Model Intercomparison and Improvement Project (AgMIP), by OPENET, and by many others for testing, and calibrating models of ET that use satellite and/or weather data. See the README for details of each data resource.

  18. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  19. n

    Berkeley Earth Climate Data and Synthesis

    • catalog.northslopescience.org
    Updated Feb 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Berkeley Earth Climate Data and Synthesis [Dataset]. https://catalog.northslopescience.org/dataset/2289
    Explore at:
    Dataset updated
    Feb 23, 2016
    Description

    The Berkeley website provides data and analysis for a number of weather stations within the North Slope region. Data download and summary graphs with trend are provided. The datasets presented are divided into three categories: Output data, Source data, and Intermediate data. The Berkeley Earth averaging process generates a variety of Output data including a set of gridded temperature fields, regional averages, and bias-corrected station data. Source data consists of the raw temperature reports that form the foundation of our averaging system. Source observations are provided as originally reported and will contain many quality control and redundancy issues. Intermediate data is constructed from the source data by merging redundant records, identifying a variety of quality control problems, and creating monthly averages from daily reports when necessary. The definitive repository for Source and Intermediate data is located in the SVN, which is built nightly. Sites include: Alpine, Ambler, Anaktuvuk, Atqasuk, Barrow, Cape Lisburne, Deadhorse, Dietrich Camp, Franklin Bluff, Galbraith Lake, Happy Valley, Lonely, Noatak, Nuiqsut, Oliktok, Point Lay, Prudhoe Bay, Red Dog, Sag River and UGNU Kuparuk

  20. ERA5 hourly data on pressure levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on pressure levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.bd0915c6
    Explore at:
    gribAvailable download formats
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Sep 1, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on pressure levels from 1940 to present".

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NOAA National Centers for Environmental Information (NCEI) (2013). Monthly Climatic Data for the World [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01037
Organization logoOrganization logo

Monthly Climatic Data for the World

gov.noaa.ncdc:C01037

Explore at:
htmlAvailable download formats
Dataset updated
May 2, 2013
Dataset provided by
National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
Time period covered
1948 - Present
Area covered
Description

Publication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations worldwide, and monthly mean upper air temperatures, dew point depressions, and wind velocities for approximately 500 observing sites.

Search
Clear search
Close search
Google apps
Main menu