100+ datasets found
  1. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  2. Climate and energy indicators for Europe from 1979 to present derived from...

    • cds.climate.copernicus.eu
    netcdf and csv
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Climate and energy indicators for Europe from 1979 to present derived from reanalysis [Dataset]. http://doi.org/10.24381/cds.4bd77450
    Explore at:
    netcdf and csvAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1979 - Aug 1, 2025
    Area covered
    Europe
    Description

    The Copernicus climate change service (C3S) operational energy dataset provides climate and energy indicators for the European energy sector. The climate-relevant indicators for the energy sector considered are: air temperature, precipitation, incoming solar radiation, wind speed at 10 m and 100 m, and mean sea level air pressure. The energy indicators are electricity demand and power generation from various sources: wind (both onshore and offshore), solar and hydro (run-of-river and reservoir) power. Depending on the indicator, the data are available at the national, regional and grid (approximately 30x30 km) level for most European countries. The spatial aggregation of data over land uses the Eurostat NUTS0 & NUTS2 (Nomenclature des unités territoriales statistiques, 2016) regions. The offshore variables (e.g. offshore wind power) use the European maritime region definitions MAR0 and MAR1. Further information on the NUTS and MAR regions can be found in the documentation. The C3S Energy operational service is composed of three main streams: historical (1979-present), seasonal forecasts and projections (typically covering the period 1970-2100). This historical dataset (1979-present) produces reference climate variables based on the ERA5 reanalysis. Energy variables are generated by transforming the climate variables using a combination of statistical models and physically based data. A comprehensive set of measured energy supply and demand data has been collected from various sources such as the European Network of Transmission System Operators (ENTSO-E). These data provide a crucial reference to assess the robustness of the models used to convert climate into electric energy variables. Data is provided for the European domain, in a multi-variable, multi-timescale view of the climate and energy systems. This is beneficial in anticipating important climate-driven changes in the energy sector, through either long-term planning or medium-term operational activities. This is also used to investigate the role of temperature on electricity demand across Europe, as well as its interaction with the variability of renewable energy generation.

  3. c

    CMIP6 climate projections

    • cds.climate.copernicus.eu
    netcdf
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). CMIP6 climate projections [Dataset]. http://doi.org/10.24381/cds.c866074c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset authored and provided by
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdf

    Time period covered
    Jan 1, 1860 - Dec 31, 2300
    Description

    This catalogue entry provides daily and monthly global climate projections data from a large number of experiments, models and time periods computed in the framework of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). CMIP6 data underpins the Intergovernmental Panel on Climate Change 6th Assessment Report. The use of these data is mostly aimed at:

    addressing outstanding scientific questions that arose as part of the IPCC reporting process; improving the understanding of the climate system; providing estimates of future climate change and related uncertainties; providing input data for the adaptation to the climate change; examining climate predictability and exploring the ability of models to predict climate on decadal time scales; evaluating how realistic the different models are in simulating the recent past.

    The term "experiments" refers to the three main categories of CMIP6 simulations:

    Historical experiments which cover the period where modern climate observations exist. These experiments show how the GCMs performs for the past climate and can be used as a reference period for comparison with scenario runs for the future. The period covered is typically 1850-2014. Climate projection experiments following the combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (RCP). The SSP scenarios provide different pathways of the future climate forcing. The period covered is typically 2015-2100.

    This catalogue entry provides both two- and three-dimensional data, along with an option to apply spatial and/or temporal subsetting to data requests. This is a new feature of the global climate projection dataset, which relies on compute processes run simultaneously in the ESGF nodes, where the data are originally located. The data are produced by the participating institutes of the CMIP6 project.

  4. o

    Essential Climate Variables: Sum of monthly precipitation (Copernicus...

    • data.opendatascience.eu
    • data.europa.eu
    Updated Jun 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Essential Climate Variables: Sum of monthly precipitation (Copernicus Climate Data Store) [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?resolution=0.25%20degrees
    Explore at:
    Dataset updated
    Jun 10, 2021
    Description

    Overview: The Essential Climate Variables for assessment of climate variability from 1979 to present dataset contains a selection of climatologies, monthly anomalies and monthly mean fields of Essential Climate Variables (ECVs) suitable for monitoring and assessment of climate variability and change. Selection criteria are based on accuracy and temporal consistency on monthly to decadal time scales. The ECV data products in this set have been estimated from climate reanalyses ERA-Interim and ERA5, and, depending on the source, may have been adjusted to account for biases and other known deficiencies. Data sources and adjustment methods used are described in the Product User Guide, as are various particulars such as the baseline periods used to calculate monthly climatologies and the corresponding anomalies. Sum of monthly precipitation: This variable is the accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. Spatial resolution: 0:15:00 (0.25°) Temporal resolution: monthly Temporal extent: 1979 - present Data unit: mm * 10 Data type: UInt32 CRS as EPSG: EPSG:4326 Processing time delay: one month

  5. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Sep 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Sep 27, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Sep 21, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  6. Z

    INTERACT arctic research stations: Historic weather data fetched and plotted...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roemer, Jonas K. (2023). INTERACT arctic research stations: Historic weather data fetched and plotted from Copernicus Climate Data Store [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10214922
    Explore at:
    Dataset updated
    Dec 5, 2023
    Dataset authored and provided by
    Roemer, Jonas K.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arctic
    Description

    Plots with historic weather data for arctic research stations covered by International Network for Terrestrial Research and Monitoring in the Arctic (INTERACT). Comparison with WMO climate normal periods 1961-1990 and 1991-2020, averages and stations deviations from the normal periods are calculated and plotted. The data source for historic data of temperature and precipitation is: Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.f17050d7
    See the linked github repository https://zenodo.org/doi/10.5281/zenodo.10214962 for how data was fetched from Copernicus Climate Data Store, prepared and plotted. The github repository also contains CSVs with source data for the plots.

  7. Basic-ECVs for Case Studies (monthly timeseries)

    • data.europa.eu
    • data.niaid.nih.gov
    unknown
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). Basic-ECVs for Case Studies (monthly timeseries) [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-11109218?locale=da
    Explore at:
    unknown(18991763)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly timeseries of basic-ecvs (.csv) spatially averaged over Case Studies for different climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (1985-2014, 2015-2100). Data are created by RethinkAction project using statistical downscaling method from CMIP6 simulations. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data: Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c. Schimanke S., Ridal M., Le Moigne P., Berggren L., Undén P., Randriamampianina R., Andrea U., Bazile E., Bertelsen A., Brousseau P., Dahlgren P., Edvinsson L., El Said A., Glinton M., Hopsch S., Isaksson L., Mladek R., Olsson E., Verrelle A., Wang Z.Q., (2021): CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.622a565a Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D.,Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac Acknowledgement also to: DRAAC, 2023, Regional climate data provided by the Regional Ditectorate for the Environment and Climate Change of the Regional Autonomous Government of Azores (https://portal.azores.gov.pt/en/web/draac) SRAA\CCIAM, 2017. Programa Regional de Alterações Climáticas (PRAC), Secretaria Regional do Ambiente e Ação Climática (SRAA) of the Governo dos Açores, Climate Change Impacts, Adaptation and Modelling (CCIAM) of the Faculdade de Ciências da Universidade de Lisboa (FCUL), https://snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/metadata/8804acd9-9d0f-40fb-bc2e-e4dff8c2b4b1

  8. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Sep 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Sep 28, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1950 - Sep 22, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  9. Forest-Forward: Identifing future suitable areas for forestry in Indonesia,...

    • zenodo.org
    csv, zip
    Updated Oct 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edward P. Morris; Edward P. Morris; Greta Carrete Vega; Greta Carrete Vega; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira (2020). Forest-Forward: Identifing future suitable areas for forestry in Indonesia, Spain, and Sweden. [Dataset]. http://doi.org/10.5281/zenodo.4055178
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 30, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Edward P. Morris; Edward P. Morris; Greta Carrete Vega; Greta Carrete Vega; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Spain, Sweden, Indonesia
    Description

    This dataset includes the original data and modelling results used to create the interactive platform Forest-forward.

    These include; climatic variables (historical reanalysis ERA-5, and the future CMIP5 projections) derived from the Copernicus Climate Data Store that have been converted to 19 standard bioclimatic variables; species occurrence data for a limited number of tree species derived from GBIF; and, the results of ensemble Species Distribution Modelling (SDM) using historical and future bioclimatic variables as predictors, created using the R package biomod2 that have been assigned to a hexagonal grid for display. Code used for the full processing pipeline is available at GitHub.

    Data files are organised by region; Indonesia (IDN), mainland Spain (ESP), and Sweden (SWE). Bioclimatic variables are GeoTIFF files grouped per region in zipped directories representing historical reanalysis (1980-2019) and future predictions (further divided into 10 y time-intervals between 2020 and 2090). SDM results (and resampled bioclimatic variables) are supplied as CSV files with WKT geometries ("

  10. Basic-ECVs for Case Studies (yearly timeseries)

    • data.europa.eu
    • data.niaid.nih.gov
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo, Basic-ECVs for Case Studies (yearly timeseries) [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-11109188?locale=fr
    Explore at:
    unknown(1608532)Available download formats
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Yearly timeseries (.csv) of basic-ecvs spatially averaged over Case Studies for different climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (1985-2014, 2015-2100). Data are created by RethinkAction project using statistical downscaling method from CMIP6 simulations. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data: Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c. Schimanke S., Ridal M., Le Moigne P., Berggren L., Undén P., Randriamampianina R., Andrea U., Bazile E., Bertelsen A., Brousseau P., Dahlgren P., Edvinsson L., El Said A., Glinton M., Hopsch S., Isaksson L., Mladek R., Olsson E., Verrelle A., Wang Z.Q., (2021): CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.622a565a Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D.,Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac Acknowledgement also to: DRAAC, 2023, Regional climate data provided by the Regional Ditectorate for the Environment and Climate Change of the Regional Autonomous Government of Azores (https://portal.azores.gov.pt/en/web/draac) SRAA\CCIAM, 2017. Programa Regional de Alterações Climáticas (PRAC), Secretaria Regional do Ambiente e Ação Climática (SRAA) of the Governo dos Açores, Climate Change Impacts, Adaptation and Modelling (CCIAM) of the Faculdade de Ciências da Universidade de Lisboa (FCUL), https://snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/metadata/8804acd9-9d0f-40fb-bc2e-e4dff8c2b4b1

  11. d

    Daily histograms of wind speed (100m), wind direction (100m) and atmospheric...

    • data.dtu.dk
    zip
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marc Imberger (2025). Daily histograms of wind speed (100m), wind direction (100m) and atmospheric stability derived from ERA5 [Dataset]. http://doi.org/10.11583/DTU.27930399.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    Technical University of Denmark
    Authors
    Marc Imberger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains daily histograms of wind speed at 100m ("WS100"), wind direction at 100 m ("WD100") and an atmospheric stability proxy ("STAB") derived from the ERA5 hourly data on single levels [1] accessed via the Copernicus Climate Change Climate Data Store [2]. The dataset covers six geographical regions (illustrated in regions.png) on a reduced 0.5 x 0.5 degrees regular grid and covers the period 1994 to 2023 (both years included). The dataset is packaged as a zip folder per region which contains a range of monthly zip folders following the convention of zarr ZipStores (more details here: https://zarr.readthedocs.io/en/stable/api/storage.html). Thus, the monthly zip folders are intended to be used in connection with the xarray python package (no unzipping of the monthly files needed).Wind speed and wind direction are derived from the U- and V-components. The stability metric makes use of a 5-class classification scheme [3] based on the Obukhov length whereby the required Obukhov length was computed using [4]. The following bins (left edges) have been used to create the histograms:Wind speed: [0, 40) m/s (bin width 1 m/s)Wind direction: [0,360) deg (bin width 15 deg)Stability: 5 discrete stability classes (1: very unstable, 2: unstable, 3: neutral, 4: stable, 5: very stable)Main Purpose: The dataset serves as minimum input data for the CLIMatological REPresentative PERiods (climrepper) python package (https://gitlab.windenergy.dtu.dk/climrepper/climrepper) in preparation for public release).References:[1] Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed Nov. 2024)[2] Copernicus Climate Change Service, Climate Data Store, (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed Nov. 2024)'[3] Holtslag, M. C., Bierbooms, W. A. A. M., & Bussel, G. J. W. van. (2014). Estimating atmospheric stability from observations and correcting wind shear models accordingly. In Journal of Physics: Conference Series (Vol. 555, p. 012052). IOP Publishing. https://doi.org/10.1088/1742-6596/555/1/012052[4] Copernicus Knowledge Base, ERA5: How to calculate Obukhov Length, URL: https://confluence.ecmwf.int/display/CKB/ERA5:+How+to+calculate+Obukhov+Length, last accessed: Nov 2024

  12. A

    Precipitation flux - AgERA5 (Global - Daily - ~10km)

    • data.amerigeoss.org
    png, wms
    Updated Jun 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2024). Precipitation flux - AgERA5 (Global - Daily - ~10km) [Dataset]. https://data.amerigeoss.org/hu/dataset/0c1da7aa-0775-46e8-985b-979c5b5ce995
    Explore at:
    png, wmsAvailable download formats
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    Food and Agriculture Organization
    Description

    Total volume of liquid water (mm3) precipitated over the period 00h-24h local time per unit of area (mm2), per day. Unit: mm day-1.

    The Precipitation flux variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5.

    References: https://doi.org/10.24381/cds.6c68c9bb

    The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide.

    ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.

    Data publication: 2021-01-30

    Data revision: 2021-10-05

    Supplemental Information:

    Acknowledgement

    All users of data uploaded on the Climate Data Store (CDS) must:

    • provide clear and visible attribution to the Copernicus programme by referencing the web catalogue entry;

    • acknowledge according to the data licence;

    • cite each product used;

    Please refer to How to acknowledge, cite and reference data published on the Climate Data Store for complete details.

    Citation:

    Boogaard, H., Schubert, J., De Wit, A., Lazebnik, J., Hutjes, R., Van der Grijn, G., (2020): Agrometeorological indicators from 1979 to present derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.6c68c9bb (Accessed on DD-MMM-YYYY).

    Contact points:

    Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts

    Resource Contact: ECMWF Support Portal

    Data lineage:

    Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.

    Resource constraints:

    License Permission

    This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing. Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice:

    • 'Generated using Copernicus Climate Change Service information [Year]' and/or

    • 'Generated using Copernicus Atmosphere Monitoring Service information [Year]'

    More information on Copernicus License in PDF version at https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    Online resources:

    Data download from original source

  13. Agregações mensais do ERA5: a mais recente reanálise climática produzida...

    • developers.google.com
    Updated Jun 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service (2020). Agregações mensais do ERA5: a mais recente reanálise climática produzida pelo ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_MONTHLY?hl=pt-br
    Explore at:
    Dataset updated
    Jun 1, 2020
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 1, 1979 - Jun 1, 2020
    Area covered
    Earth
    Description

    O ERA5 é a quinta geração da reanálise atmosférica do ECMWF do clima global. A reanálise combina dados do modelo com observações de todo o mundo em um conjunto de dados globalmente completo e consistente. O ERA5 substitui o ERA-Interim, que é a reanálise anterior. O ERA5 MONTHLY fornece valores agregados para cada mês de sete parâmetros de reanálise climática do ERA5: …

  14. Case Studies

    • data.europa.eu
    • data.niaid.nih.gov
    • +1more
    unknown
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). Case Studies [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-11109499?locale=da
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Climate maps (raster layers .tif) of derived-ecvs with a spatial resolution of 5.5 km (1 km for Azores) obtained by statistically downscaling a set of CMIP6 simulations for different IPCC climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (reference, short time-horizon, medium time-horizon, long time-horizon). Data are representative of specific climate normals (yearly averaged values) and created by RethinkAction. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data: Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c. Schimanke S., Ridal M., Le Moigne P., Berggren L., Undén P., Randriamampianina R., Andrea U., Bazile E., Bertelsen A., Brousseau P., Dahlgren P., Edvinsson L., El Said A., Glinton M., Hopsch S., Isaksson L., Mladek R., Olsson E., Verrelle A., Wang Z.Q., (2021): CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.622a565a Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D.,Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac Acknowledgement also to: DRAAC, 2023, Regional climate data provided by the Regional Ditectorate for the Environment and Climate Change of the Regional Autonomous Government of Azores (https://portal.azores.gov.pt/en/web/draac) SRAA\CCIAM, 2017. Programa Regional de Alterações Climáticas (PRAC), Secretaria Regional do Ambiente e Ação Climática (SRAA) of the Governo dos Açores, Climate Change Impacts, Adaptation and Modelling (CCIAM) of the Faculdade de Ciências da Universidade de Lisboa (FCUL), https://snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/metadata/8804acd9-9d0f-40fb-bc2e-e4dff8c2b4b1

  15. ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF /...

    • developers.google.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service, ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
    Explore at:
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 2, 1979 - Jul 9, 2020
    Area covered
    Earth
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 DAILY provides aggregated values for each day for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, daily minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Daily total precipitation values are given as daily sums. All other parameters are provided as daily averages. ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Daily aggregates have been calculated based on the ERA5 hourly values of each parameter.

  16. Z

    ERA5-Land weekly: Total precipitation, weekly time series for Europe at 1 km...

    • data.niaid.nih.gov
    • data.mundialis.de
    • +1more
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neteler, Markus (2024). ERA5-Land weekly: Total precipitation, weekly time series for Europe at 1 km resolution (2016 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6559047
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Neteler, Markus
    Kröber, Felix
    Haas, Julia
    Metz, Markus
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step.

    Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA.

    The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020. Data available is the weekly average of daily sums and the weekly sum of daily sums of total precipitation.

    File naming: Average of daily sum: era5_land_prectot_avg_weekly_YYYY_MM_DD.tif Sum of daily sum: era5_land_prectot_sum_weekly_YYYY_MM_DD.tif

    The date in the file name determines the start day of the week (Saturday).

    Pixel values: mm * 10 Example: Value 218 = 21.8 mm

    Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)

    Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E

    Spatial resolution: 1km

    Temporal resolution: weekly

    Period: 01/01/2016 - 12/31/2020

    Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.

    Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Other resources: https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b

    Format: GeoTIFF

    Representation type: Grid

    Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact: mundialis GmbH & Co. KG, info@mundialis.de

  17. o

    ERA5 Land precipitation daily sum

    • data.opendatascience.eu
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land precipitation daily sum [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: precipitation daily sums from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent cumulative daily precipitation in mm x 10.

  18. c

    Climate indicators for Europe from 1940 to 2100 derived from reanalysis and...

    • cds.climate.copernicus.eu
    netcdf-4
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Climate indicators for Europe from 1940 to 2100 derived from reanalysis and climate projections [Dataset]. https://cds.climate.copernicus.eu/datasets/sis-ecde-climate-indicators
    Explore at:
    netcdf-4Available download formats
    Dataset updated
    Jan 31, 2025
    Dataset authored and provided by
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Dec 31, 2100
    Area covered
    Europe
    Description

    This dataset provides a series of climate indices derived from reanalysis and model simulations data hosted on the Copernicus Climate Data Store (CDS). These indicators describe how climate variability and change of essential climate variables can impact sectors such as health, agriculture, forestry, energy, tourism, or water and coastal management. Those indices are relevant for adaptation planning at the European and national level and their development was driven by the European Environment Agency (EEA) to address informational needs of climate change adaptation national initiatives across the EU and partner countries as expressed by user requirements and stakeholder consultation. The indices cover the hazard categories introduced by the IPCC and the European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC-CCA). They are also made available interactively through CDS Toolbox public visualisation apps on the European Climate Data Explorer hosted on EEA’s Climate-adapt site. The indices are either downloaded from the CDS where available, or calculated through a specific CDS Toolbox workflow. In this way both the calculations and the resulting data are fully traceable. As they come from different datasets the underlying climate data differ in their technical specification (type and number of climate and impact models involved, bias-corrected or not, periods covered etc.). An effort was made in the dataset selection to limit the heterogeneity of the underlying dataset as ideally the indices should come from the same dataset with identical specifications. The indices related to temperature, precipitation and wind (20 out of 30) were calculated from atmospheric variables in the same datasets: 'Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections', and 'ERA5 hourly data on single levels from 1940 to present'. The other indices are directly available from CDS datasets generated by specific theme projects. More information about this dataset can be found in the documentation. The underlying datasets hosted on the CDS are:

    ERA5 hourly data on single levels from 1940 to present - used to calculate most of the temperature, precipitation and wind speed indicators as it provides the historical and observation based baseline used to monitor the indicators. Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections - used to calculate most of the temperature, precipitation and wind speed indicators as it provides bias-corrected sub-daily data. It is used for all the indicators except those specified in the following datasets below. Fire danger indicators for Europe from 1970 to 2098 derived from climate projections - provides the high fire danger days and fire weather indicators. Hydrology-related climate impact indicators from 1970 to 2100 derived from bias adjusted European climate projections - provides the river flood, river discharge, aridity actual, and mean soil moisture indicators. Mountain tourism meteorological and snow indicators for Europe from 1950 to 2100 derived from reanalysis and climate projections - provides the snowfall amount index. Water level change indicators for the European coast from 1977 to 2100 derived from climate projections - provides the relative sea level rise and extreme sea level indicators.

    This dataset was produced on behalf of the Copernicus Climate Change Service.

  19. h

    SeasonBench-EA-ERA5_EA_6hour

    • huggingface.co
    Updated Aug 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mengxuan (2025). SeasonBench-EA-ERA5_EA_6hour [Dataset]. https://huggingface.co/datasets/SauryChen/SeasonBench-EA-ERA5_EA_6hour
    Explore at:
    Dataset updated
    Aug 11, 2025
    Authors
    Mengxuan
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The dataset is a subset for SeasonBench-EA Benchmark, which contains the 6-hour ERA5 data for 0.25 deg East Asia region. The total precipitation has the temporal resolution of 1-hour (for calculating daily). All data are downloaded from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/) and reorganized for benchmark construction. Please ensure compliance with the CDS Licence when using or redistributing the data.

  20. C3S Seasonal Forecasts

    • ecmwf.int
    • stage.ecmwf.int
    application/x-grib
    Updated Jan 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2017). C3S Seasonal Forecasts [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/c3s-seasonal-forecasts
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Jan 1, 2017
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Copernicus Climate Change Service (C3S) seasonal forecast service is based on data from several state-of-the-art seasonal prediction systems.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
Organization logo

ECMWF Reanalysis v5

Explore at:
application/x-grib(1 datasets)Available download formats
Dataset updated
Dec 31, 1969
Dataset authored and provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

Search
Clear search
Close search
Google apps
Main menu