100+ datasets found
  1. Complete ERA5 global atmospheric reanalysis

    • cds.climate.copernicus.eu
    netcdf
    Updated May 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2023). Complete ERA5 global atmospheric reanalysis [Dataset]. http://doi.org/10.24381/cds.143582cf
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    May 25, 2023
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1949
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.

  2. Climate indicators for Europe from 1940 to 2100 derived from reanalysis and...

    • cds.climate.copernicus.eu
    netcdf-4
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Climate indicators for Europe from 1940 to 2100 derived from reanalysis and climate projections [Dataset]. https://cds.climate.copernicus.eu/datasets/sis-ecde-climate-indicators
    Explore at:
    netcdf-4Available download formats
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1940 - Dec 31, 2100
    Description

    This dataset provides a series of climate indices derived from reanalysis and model simulations data hosted on the Copernicus Climate Data Store (CDS). These indicators describe how climate variability and change of essential climate variables can impact sectors such as health, agriculture, forestry, energy, tourism, or water and coastal management. Those indices are relevant for adaptation planning at the European and national level and their development was driven by the European Environment Agency (EEA) to address informational needs of climate change adaptation national initiatives across the EU and partner countries as expressed by user requirements and stakeholder consultation. The indices cover the hazard categories introduced by the IPCC and the European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC-CCA). They are also made available interactively through CDS Toolbox public visualisation apps on the European Climate Data Explorer hosted on EEA’s Climate-adapt site. The indices are either downloaded from the CDS where available, or calculated through a specific CDS Toolbox workflow. In this way both the calculations and the resulting data are fully traceable. As they come from different datasets the underlying climate data differ in their technical specification (type and number of climate and impact models involved, bias-corrected or not, periods covered etc.). An effort was made in the dataset selection to limit the heterogeneity of the underlying dataset as ideally the indices should come from the same dataset with identical specifications. The indices related to temperature, precipitation and wind (20 out of 30) were calculated from atmospheric variables in the same datasets: 'Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections', and 'ERA5 hourly data on single levels from 1940 to present'. The other indices are directly available from CDS datasets generated by specific theme projects. More information about this dataset can be found in the documentation. The underlying datasets hosted on the CDS are:

    ERA5 hourly data on single levels from 1940 to present - used to calculate most of the temperature, precipitation and wind speed indicators as it provides the historical and observation based baseline used to monitor the indicators. Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections - used to calculate most of the temperature, precipitation and wind speed indicators as it provides bias-corrected sub-daily data. It is used for all the indicators except those specified in the following datasets below. Fire danger indicators for Europe from 1970 to 2098 derived from climate projections - provides the high fire danger days and fire weather indicators. Hydrology-related climate impact indicators from 1970 to 2100 derived from bias adjusted European climate projections - provides the river flood, river discharge, aridity actual, and mean soil moisture indicators. Mountain tourism meteorological and snow indicators for Europe from 1950 to 2100 derived from reanalysis and climate projections - provides the snowfall amount index. Water level change indicators for the European coast from 1977 to 2100 derived from climate projections - provides the relative sea level rise and extreme sea level indicators.

    This dataset was produced on behalf of the Copernicus Climate Change Service.

  3. o

    Essential Climate Variables: Sum of monthly precipitation (Copernicus...

    • data.opendatascience.eu
    Updated Jun 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Essential Climate Variables: Sum of monthly precipitation (Copernicus Climate Data Store) [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?resolution=0.25%20degrees
    Explore at:
    Dataset updated
    Jun 10, 2021
    Description

    Overview: The Essential Climate Variables for assessment of climate variability from 1979 to present dataset contains a selection of climatologies, monthly anomalies and monthly mean fields of Essential Climate Variables (ECVs) suitable for monitoring and assessment of climate variability and change. Selection criteria are based on accuracy and temporal consistency on monthly to decadal time scales. The ECV data products in this set have been estimated from climate reanalyses ERA-Interim and ERA5, and, depending on the source, may have been adjusted to account for biases and other known deficiencies. Data sources and adjustment methods used are described in the Product User Guide, as are various particulars such as the baseline periods used to calculate monthly climatologies and the corresponding anomalies. Sum of monthly precipitation: This variable is the accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. Spatial resolution: 0:15:00 (0.25°) Temporal resolution: monthly Temporal extent: 1979 - present Data unit: mm * 10 Data type: UInt32 CRS as EPSG: EPSG:4326 Processing time delay: one month

  4. Climate and energy indicators for Europe from 1979 to present derived from...

    • cds.climate.copernicus.eu
    netcdf and csv
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Climate and energy indicators for Europe from 1979 to present derived from reanalysis [Dataset]. http://doi.org/10.24381/cds.4bd77450
    Explore at:
    netcdf and csvAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1979 - Feb 1, 2025
    Area covered
    Europe
    Description

    The Copernicus climate change service (C3S) operational energy dataset provides climate and energy indicators for the European energy sector. The climate-relevant indicators for the energy sector considered are: air temperature, precipitation, incoming solar radiation, wind speed at 10 m and 100 m, and mean sea level air pressure. The energy indicators are electricity demand and power generation from various sources: wind (both onshore and offshore), solar and hydro (run-of-river and reservoir) power. Depending on the indicator, the data are available at the national, regional and grid (approximately 30x30 km) level for most European countries. The spatial aggregation of data over land uses the Eurostat NUTS0 & NUTS2 (Nomenclature des unités territoriales statistiques, 2016) regions. The offshore variables (e.g. offshore wind power) use the European maritime region definitions MAR0 and MAR1. Further information on the NUTS and MAR regions can be found in the documentation. The C3S Energy operational service is composed of three main streams: historical (1979-present), seasonal forecasts and projections (typically covering the period 1970-2100). This historical dataset (1979-present) produces reference climate variables based on the ERA5 reanalysis. Energy variables are generated by transforming the climate variables using a combination of statistical models and physically based data. A comprehensive set of measured energy supply and demand data has been collected from various sources such as the European Network of Transmission System Operators (ENTSO-E). These data provide a crucial reference to assess the robustness of the models used to convert climate into electric energy variables. Data is provided for the European domain, in a multi-variable, multi-timescale view of the climate and energy systems. This is beneficial in anticipating important climate-driven changes in the energy sector, through either long-term planning or medium-term operational activities. This is also used to investigate the role of temperature on electricity demand across Europe, as well as its interaction with the variability of renewable energy generation.

  5. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1940 - Mar 20, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  6. Z

    Derived-ECVs for Case Studies (monthly timeseries)

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fedele, Giusy (2024). Derived-ECVs for Case Studies (monthly timeseries) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11109312
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset provided by
    Reder, Alfredo
    Fedele, Giusy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly timeseries (.csv) of derived-ecvs spatially averaged over Case Studies for different climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (1985-2014, 2015-2100). Data are created by RethinkAction project using statistical downscaling method from CMIP6 simulations.

    We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.

    Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data:

    Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c.

    Schimanke S., Ridal M., Le Moigne P., Berggren L., Undén P., Randriamampianina R., Andrea U., Bazile E., Bertelsen A., Brousseau P., Dahlgren P., Edvinsson L., El Said A., Glinton M., Hopsch S., Isaksson L., Mladek R., Olsson E., Verrelle A., Wang Z.Q., (2021): CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.622a565a

    Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D.,Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47

    Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac

    Acknowledgement also to:

    DRAAC, 2023, Regional climate data provided by the Regional Ditectorate for the Environment and Climate Change of the Regional Autonomous Government of Azores (https://portal.azores.gov.pt/en/web/draac)

    SRAA\CCIAM, 2017. Programa Regional de Alterações Climáticas (PRAC), Secretaria Regional do Ambiente e Ação Climática (SRAA) of the Governo dos Açores, Climate Change Impacts, Adaptation and Modelling (CCIAM) of the Faculdade de Ciências da Universidade de Lisboa (FCUL), https://snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/metadata/8804acd9-9d0f-40fb-bc2e-e4dff8c2b4b1

  7. ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF /...

    • developers.google.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service, ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY
    Explore at:
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 2, 1979 - Jul 9, 2020
    Area covered
    Earth
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 DAILY provides aggregated values for each day for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, daily minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Daily total precipitation values are given as daily sums. All other parameters are provided as daily averages. ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Daily aggregates have been calculated based on the ERA5 hourly values of each parameter.

  8. ERA5 Daily Aggregates – ניתוח מחדש של נתוני האקלים העדכניים ביותר שנוצר על...

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF / Copernicus Climate Change Service, ERA5 Daily Aggregates – ניתוח מחדש של נתוני האקלים העדכניים ביותר שנוצר על ידי ECMWF / Copernicus Climate Change Service [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY?hl=he
    Explore at:
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Time period covered
    Jan 2, 1979 - Jul 9, 2020
    Area covered
    Earth
    Description

    ERA5 הוא הדור החמישי של ניתוח האטמוספרה מחדש של ECMWF לגבי האקלים הגלובלי. ניתוח נתונים מחדש משלב נתונים מהמודל עם תצפיות מרחבי העולם, ויוצר מערך נתונים מלא ועקבי ברחבי העולם. ERA5 מחליף את קודמו, ניתוח מחדש של ERA-Interim. ERA5 DAILY מספק ערכים מצטברים לכל יום בשבעה פרמטרים של ניתוח מחדש של האקלים ב-ERA5: …

  9. C3S Seasonal Forecasts

    • ecmwf.int
    application/x-grib
    Updated Jan 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2017). C3S Seasonal Forecasts [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/c3s-seasonal-forecasts
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Jan 1, 2017
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    http://apps.ecmwf.int/datasets/licences/copernicushttp://apps.ecmwf.int/datasets/licences/copernicus

    Description

    The Copernicus Climate Change Service (C3S) seasonal forecast service is based on data from several state-of-the-art seasonal prediction systems.

  10. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    {grib,netcdf}
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1950 - Mar 20, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  11. o

    ERA5 Land surface temperature daily average

    • data.opendatascience.eu
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land surface temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: surface temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily surface temperature in degrees Celsius x 10.

  12. Z

    ERA5-Land weekly: Air temperature at 2 meter above surface, weekly time...

    • data.niaid.nih.gov
    • data.mundialis.de
    • +1more
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neteler, Markus (2024). ERA5-Land weekly: Air temperature at 2 meter above surface, weekly time series for Europe at 1 km resolution (2016 - 2020) [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_6559121
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Kröber, Felix
    Metz, Markus
    Neteler, Markus
    Haas, Julia
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Air temperature (2 m): Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions.

    Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA

    The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020. Data available is the weekly average of daily averages, the weekly minimum of daily minima and the weekly maximum of daily maxima of air temperature (2 m).

    File naming: Average of daily average: era5_land_t2m_avg_weekly_YYYY_MM_DD.tif Max of daily max: era5_land_t2m_max_weekly_YYYY_MM_DD.tif Min of daily min: era5_land_t2m_min_weekly_YYYY_MM_DD.tif

    The date in the file name determines the start day of the week (Saturday).

    Pixel value: °C * 10 Example: Value 44 = 4.4 °C

    The QML or SLD style files can be used for visualization of the temperature layers.

    Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)

    Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E

    Spatial resolution: 1km

    Temporal resolution: weekly

    Time period: 01/01/2016 - 12/31/2020

    Format: GeoTIFF

    Representation type: Grid

    Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.

    Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Other resources: https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b

    Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact: mundialis GmbH & Co. KG, info@mundialis.de

  13. Case Studies

    • zenodo.org
    Updated Feb 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alfredo Reder; Giusy Fedele; Alfredo Reder; Giusy Fedele (2025). Case Studies [Dataset]. http://doi.org/10.5281/zenodo.11109499
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alfredo Reder; Giusy Fedele; Alfredo Reder; Giusy Fedele
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Climate maps (raster layers .tif) of derived-ecvs with a spatial resolution of 5.5 km (1 km for Azores) obtained by statistically downscaling a set of CMIP6 simulations for different IPCC climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (reference, short time-horizon, medium time-horizon, long time-horizon). Data are representative of specific climate normals (yearly averaged values) and created by RethinkAction.

    We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.

    Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data:

    • Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c.
    • Schimanke S., Ridal M., Le Moigne P., Berggren L., Undén P., Randriamampianina R., Andrea U., Bazile E., Bertelsen A., Brousseau P., Dahlgren P., Edvinsson L., El Said A., Glinton M., Hopsch S., Isaksson L., Mladek R., Olsson E., Verrelle A., Wang Z.Q., (2021): CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.622a565a
    • Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D.,Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47
    • Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac

    Acknowledgement also to:

  14. o

    ERA5 Land air temperature daily average

    • data.opendatascience.eu
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land air temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: air temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily air temperature 2m above ground in degrees Celsius x 10.

  15. storm_tide_trim_ECMWF

    • wdc-climate.de
    Updated May 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    storm_tide_trim_ECMWF [Dataset]. https://www.wdc-climate.de/ui/entry?acronym=StormTideTrimEcmwf
    Explore at:
    Dataset updated
    May 2, 2023
    Dataset provided by
    World Data Centerhttp://www.icsu-wds.org/
    Authors
    Meyer, Elke M. I.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 1949 - Dec 31, 2013
    Area covered
    Variables measured
    u_wind-at10m, v_wind-at10m, sea_surface_height_above_sea_level
    Description

    [ Derived from parent entry - See data hierarchy tab ]

    The hydrodynamic model Trim-NP (2.6) was used to get an impression of the spatial distribution of water levels at the coast during historical severe storm tides. For these events, the atmospheric reanalysis products from the Twentieth Century Reanalysis project (20CR), (Compo et al., 2011; Slivinski et al., 2019) and from the ECMWF (ERA5 and UERRA-HARMONIE) (Hersbach et al., 2018, Copernicus Climate Change Service, 2019) are used to force the model. Additionally, the German weather service (DWD) developed reanalysis data for storm surge events for the project OptempS-MohoWif (Kristandt et al., 2014). These reanalysis data are calculated three days before the event and two days after. Based on the comparison between tide gauge observations and model output, we can estimate, the skill of the reanalyses in simulating severe storms. All model runs are forced by finite element solutions tidal atlases FES2004 at the lateral boundaries (Lyard et al., 2006). Further information about the reanalyses: https://psl.noaa.gov/data/20thC_Rean/ https://www.ecmwf.int/en/research/climate-reanalysis/reanalysis-climate-monitoring https://www.ecmwf.int/en/forecasts/dataset/uncertainties-ensembles-regional-reanalysis Copernicus Climate Change Service, Climate Data Store, (2019): Complete UERRA regional reanalysis for Europe from 1961 to 2019. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.dd7c6d66 (Accessed on 01-APR-2023)

    The file name of the data sets is composed as follows. trim_

    grid: 2 ( 6.4 km resolution) and 4 (1.6km resolution) variables: u10(x_wind), v10(y_wind) und e(sea_surface_height_above_sea_level) forcing: 20CR versions(v2c und v3) and (UERRA, ERA5) for ECMWF and OptemptS Year: 1825, 1949, 1953, 1962, 1967, 1976, 1999, 2013 run: only used for the 20CR project with 56 (v2c) and 80 (v3) ensemble members

    Depending on whether the forcing data was available, data are generated.

  16. G

    ERA5-Land Monthly Averaged by Hour of Day – ECMWF Climate Reanalysis

    • developers.google.com
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Climate Data Store (2025). ERA5-Land Monthly Averaged by Hour of Day – ECMWF Climate Reanalysis [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_BY_HOUR?hl=pl
    Explore at:
    Dataset updated
    Feb 1, 2025
    Dataset provided by
    Climate Data Store
    Time period covered
    Jan 1, 1950 - Feb 1, 2025
    Area covered
    Earth
    Description

    ERA5-Land to zestaw danych z ponownym przeanalizowaniem, który zapewnia spójny obraz ewolucji zmiennych dotyczących lądu w ciągu kilku dekad w ulepszonej rozdzielczości w porównaniu z ERA5. Dane ERA5-Land zostały wygenerowane przez odtworzenie komponentu lądowego w ramach ponownej analizy klimatu ECMWF ERA5. Reanalysis łączy dane modelu z obserwacjami z całego świata…

  17. ECMWF Reanalysis v5 - Land

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 - Land [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5-land
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    http://apps.ecmwf.int/datasets/licences/copernicushttp://apps.ecmwf.int/datasets/licences/copernicus

    Description

    developed by C3S at ECMWF

  18. Copernicus

    • sextant.ifremer.fr
    • pigma.org
    www:link +1
    Updated Sep 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2021). Copernicus [Dataset]. https://sextant.ifremer.fr/geonetwork/srv/api/records/ff2cd349-ecab-48e1-817a-1ed87dc0c4be
    Explore at:
    www:link-1.0-http--publication-url, www:linkAvailable download formats
    Dataset updated
    Sep 6, 2021
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Ifremer
    Authors
    ECMWF
    Area covered
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 4 to 7 decades. Currently data is available from 1950, split into Climate Data Store entries for 1950-1978 (preliminary back extension) and from 1979 onwards (final release plus timely updates, this page). ERA5 replaces the ERA-Interim reanalysis.

    Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product.

    ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread.

    ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. So far this has not been the case and when this does occur users will be notified.

    The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications.

    An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines.

    Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities).

    The present entry is "ERA5 monthly mean data on single levels from 1979 to present".

  19. S

    ERA5-Land monthly averaged dataset for Galaxy Panoply training

    • data.subak.org
    csv
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ERA5-Land monthly averaged dataset for Galaxy Panoply training [Dataset]. https://data.subak.org/dataset/era5-land-monthly-averaged-dataset-for-galaxy-panoply-training
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    University of Oslo, Department of Geosciences
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ERA5-Land monthly averaged data January 2019

    Dataset has been retrieved on the Copernicus Climate data Store (https://cds.climate.copernicus.eu/#!/home) and is meant to be used for teaching purposes only. This dataset is used in the Galaxy training on "Visualize Climate data with Panoply in Galaxy".

    See https://training.galaxyproject.org/ (topic: climate) for more information.

    Product type:Monthly averaged reanalysis

    Variable:

    10m u-component of wind, 10m v-component of wind, 2m temperature, Leaf area index, high vegetation, Leaf area index, low vegetation, Snow cover, Snow depth

    Year:

    2019

    Month:

    January

    Time:

    00:00

    Format:

    NetCDF (experimental)

  20. Forest-Forward: Identifing future suitable areas for forestry in Indonesia,...

    • zenodo.org
    • data.subak.org
    • +1more
    csv, zip
    Updated Oct 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edward P. Morris; Edward P. Morris; Greta Carrete Vega; Greta Carrete Vega; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira (2020). Forest-Forward: Identifing future suitable areas for forestry in Indonesia, Spain, and Sweden. [Dataset]. http://doi.org/10.5281/zenodo.4055178
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 30, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Edward P. Morris; Edward P. Morris; Greta Carrete Vega; Greta Carrete Vega; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira; Blas Lajarin Sanchez; Jorge Paz Jimenez; Nieves Peña Cerezo; Luisa Teixeira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Spain, Sweden, Indonesia
    Description

    This dataset includes the original data and modelling results used to create the interactive platform Forest-forward.

    These include; climatic variables (historical reanalysis ERA-5, and the future CMIP5 projections) derived from the Copernicus Climate Data Store that have been converted to 19 standard bioclimatic variables; species occurrence data for a limited number of tree species derived from GBIF; and, the results of ensemble Species Distribution Modelling (SDM) using historical and future bioclimatic variables as predictors, created using the R package biomod2 that have been assigned to a hexagonal grid for display. Code used for the full processing pipeline is available at GitHub.

    Data files are organised by region; Indonesia (IDN), mainland Spain (ESP), and Sweden (SWE). Bioclimatic variables are GeoTIFF files grouped per region in zipped directories representing historical reanalysis (1980-2019) and future predictions (further divided into 10 y time-intervals between 2020 and 2090). SDM results (and resampled bioclimatic variables) are supplied as CSV files with WKT geometries ("

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2023). Complete ERA5 global atmospheric reanalysis [Dataset]. http://doi.org/10.24381/cds.143582cf
Organization logo

Complete ERA5 global atmospheric reanalysis

Explore at:
164 scholarly articles cite this dataset (View in Google Scholar)
netcdfAvailable download formats
Dataset updated
May 25, 2023
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

Time period covered
Jan 1, 1949
Description

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.

Search
Clear search
Close search
Google apps
Main menu