100+ datasets found
  1. U

    Python code used to download gridMET climate data for public-supply water...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Jan 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carol Luukkonen; Ayman Alzraiee; Joshua Larsen; Donald Martin; Deidre Herbert; Cheryl Buchwald; Natalie Houston; Kristen Valseth; Scott Paulinski; Lisa Miller; Richard Niswonger; Jana Stewart; Cheryl Dieter (2024). Python code used to download gridMET climate data for public-supply water service areas [Dataset]. http://doi.org/10.5066/P9FUL880
    Explore at:
    Dataset updated
    Jan 5, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Carol Luukkonen; Ayman Alzraiee; Joshua Larsen; Donald Martin; Deidre Herbert; Cheryl Buchwald; Natalie Houston; Kristen Valseth; Scott Paulinski; Lisa Miller; Richard Niswonger; Jana Stewart; Cheryl Dieter
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 31, 2020
    Description

    This child item describes Python code used to retrieve gridMET climate data for a specific area and time period. Climate data were retrieved for public-supply water service areas, but the climate data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the climate data collector code were used as input feature variables in the public supply delivery and water use machine learning models. This page includes the following file: climate_data_collector.zip - a zip file containing the climate data collector Python code used to retrieve climate data and a README file.

  2. H

    Climate Data Download for NOCA Observatory

    • beta.hydroshare.org
    • hydroshare.org
    • +1more
    zip
    Updated Mar 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Castronova (2017). Climate Data Download for NOCA Observatory [Dataset]. https://beta.hydroshare.org/resource/0c184e9af24f424ca7be2cd40f9006a0/
    Explore at:
    zip(432.0 MB)Available download formats
    Dataset updated
    Mar 22, 2017
    Dataset provided by
    HydroShare
    Authors
    Anthony Castronova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This a download of VIC fluxesw data and vizualization processing results from the Daily_VIC_1915_2011 (Livneh et al. 2013); Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer, and D.P. Lettenmaier, 2013: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions, Journal of Climate, 26, 9384–9392.

  3. Global Surface Summary of the Day - GSOD

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +3more
    csv
    Updated Aug 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce (2023). Global Surface Summary of the Day - GSOD [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 3, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Authors
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Time period covered
    Jan 1, 1929 - Present
    Area covered
    Description

    Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.

  4. NOAA U.S. Climate Gridded Dataset (NClimGrid)

    • registry.opendata.aws
    Updated Aug 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA (2021). NOAA U.S. Climate Gridded Dataset (NClimGrid) [Dataset]. https://registry.opendata.aws/noaa-nclimgrid/
    Explore at:
    Dataset updated
    Aug 12, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. On an annual basis, approximately one year of "final" nClimGrid will be submitted to replace the initially supplied "preliminary" data for the same time period. Users should be sure to ascertain which level of data is required for their research.

    EpiNOAA is an analysis ready dataset that consists of a daily time-series of nClimGrid measures (maximum temperature, minimum temperature, average temperature, and precipitation) at the county scale. Each file provides daily values for the Continental United States. Data are available from 1951 to the present. Daily data are updated every 3 days with a preliminary data file and replaced with the scaled (i.e., quality controlled) data file every three months. This derivative data product is an enhancement from the original daily nClimGrid dataset in that all four weather parameters are now packaged into one file and assembled in a daily time-series format. In addition to a direct download option, an R package and web interface has been developed to streamline access to the final data product. These options allow end users three separate access modes to arrive at a customized dataset unique to each end user’s application. Users should be sure to review the data documentation to inform which level of data is required for their research.

  5. ERA5 hourly data on pressure levels from 1940 to present

    • cds.climate.copernicus.eu
    • cds-test-cci2.copernicus-climate.eu
    grib
    Updated Jul 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on pressure levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.bd0915c6
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 6, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on pressure levels from 1940 to present".

  6. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  7. Monthly Climatic Data for the World

    • ncei.noaa.gov
    • data.cnra.ca.gov
    • +4more
    html
    Updated May 2, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (NCEI) (2013). Monthly Climatic Data for the World [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01037
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 2, 2013
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Time period covered
    1948 - Present
    Area covered
    Description

    Publication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations worldwide, and monthly mean upper air temperatures, dew point depressions, and wind velocities for approximately 500 observing sites.

  8. Historical and future precipitation trends (Map Service)

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +7more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future precipitation trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-precipitation-trends-map-service-f7d6d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  9. o

    Kenya Climate Data | 1991-2016 - Dataset - openAFRICA

    • open.africa
    Updated Nov 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Kenya Climate Data | 1991-2016 - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/kenya-climate-data-1991-2016
    Explore at:
    Dataset updated
    Nov 29, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kenya
    Description

    This is data on the Rainfall(mm) and Temperature(Celsius) of Kenya between the years 1991 to 2016. This data was collected by the climate knowledge portal by the World Bank.

  10. n

    Berkeley Earth Climate Data and Synthesis

    • catalog.northslopescience.org
    Updated Feb 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Berkeley Earth Climate Data and Synthesis [Dataset]. https://catalog.northslopescience.org/dataset/2289
    Explore at:
    Dataset updated
    Feb 23, 2016
    Description

    The Berkeley website provides data and analysis for a number of weather stations within the North Slope region. Data download and summary graphs with trend are provided. The datasets presented are divided into three categories: Output data, Source data, and Intermediate data. The Berkeley Earth averaging process generates a variety of Output data including a set of gridded temperature fields, regional averages, and bias-corrected station data. Source data consists of the raw temperature reports that form the foundation of our averaging system. Source observations are provided as originally reported and will contain many quality control and redundancy issues. Intermediate data is constructed from the source data by merging redundant records, identifying a variety of quality control problems, and creating monthly averages from daily reports when necessary. The definitive repository for Source and Intermediate data is located in the SVN, which is built nightly. Sites include: Alpine, Ambler, Anaktuvuk, Atqasuk, Barrow, Cape Lisburne, Deadhorse, Dietrich Camp, Franklin Bluff, Galbraith Lake, Happy Valley, Lonely, Noatak, Nuiqsut, Oliktok, Point Lay, Prudhoe Bay, Red Dog, Sag River and UGNU Kuparuk

  11. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    • cds-stable-bopen.copernicus-climate.eu
    netcdf
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Jan 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  12. e

    Climate Change Knowledge Portal: Ensemble Projections - Dataset -...

    • energydata.info
    Updated Oct 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Climate Change Knowledge Portal: Ensemble Projections - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/climate-change-knowledge-portal-ensemble-projections
    Explore at:
    Dataset updated
    Oct 25, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    “Ensemble” temperature and precipitation data are derived from multiple global circulation models (GCMs). The ensemble data depict the range (10th percentile, median and 90th percentile) of model outputs run under each of two scenarios, A2 and B1, for four future time periods. The first listed download contains data aggregated to the country level; the remaining downloads are gridded data in shapefile format.

  13. Climate Change Impacts on Air Quality and Human Health

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jan 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). Climate Change Impacts on Air Quality and Human Health [Dataset]. https://catalog.data.gov/dataset/climate-change-impacts-on-air-quality-and-human-health
    Explore at:
    Dataset updated
    Jan 24, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This dataset contains modeled temperature, ozone, and PM2.5 data for the United States over the 21st century, using two global climate model scenarios and two emissions datasets.

  14. Historical annual precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  15. D

    Climatic dataset from ICIPE, Nairobi, Kenya, 2022

    • dataverse.ird.fr
    pdf, png, tsv
    Updated Mar 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francois Rebaudo; Francois Rebaudo; Bonoukpoè Mawuko Sokame; Julius Ochieng Obonyo; Paul-André Calatayud; Paul-André Calatayud; Bonoukpoè Mawuko Sokame; Julius Ochieng Obonyo (2023). Climatic dataset from ICIPE, Nairobi, Kenya, 2022 [Dataset]. http://doi.org/10.23708/PM58HP
    Explore at:
    tsv(11391531), tsv(11286029), png(28775), tsv(11462585), pdf(364665)Available download formats
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    DataSuds
    Authors
    Francois Rebaudo; Francois Rebaudo; Bonoukpoè Mawuko Sokame; Julius Ochieng Obonyo; Paul-André Calatayud; Paul-André Calatayud; Bonoukpoè Mawuko Sokame; Julius Ochieng Obonyo
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/PM58HPhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/PM58HP

    Time period covered
    Jan 1, 2022 - Dec 31, 2022
    Area covered
    Kenya, Nairobi
    Dataset funded by
    ANR, France
    Description

    This dataset corresponds to climate data for the year 2022 at ICIPE, Nairobi, Kenya. The data includes temperature, relative humidity, atmospheric pressure in three separate CSV files with approximately one measurement every minute. The first column indicates the date and time in UTC and the second column the measurement made (column names are visible in the header). The measurements were made using a BME680 type sensor calibrated with a DS18B20 temperature probe, and connected to a Raspberry Pi. The dataset includes basic graphical visualizations. More information can be found here: https://pi2p.ird.fr/

  16. North American Dataset

    • ncei.noaa.gov
    • data.cnra.ca.gov
    • +1more
    Updated Oct 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Menne, Matthew J.; Williams, Claude N. Jr.; Korzeniewski, Bryant (2017). North American Dataset [Dataset]. http://doi.org/10.7289/v5348hn5
    Explore at:
    Dataset updated
    Oct 2017
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Authors
    Menne, Matthew J.; Williams, Claude N. Jr.; Korzeniewski, Bryant
    Time period covered
    Jan 1, 1850 - Present
    Area covered
    Description

    The North American Dataset contains sets of Maximum, Minimum and Average Temperature data and Precipitation data that are either (1) raw (non-adjusted though flagged for possible quality issues), (2) adjusted due to time of observation bias (TOB) or (3) put through the Pairwise Homogenization Algorithm (PHA). These files contain North American stations and its data are measured in hundredths of degrees Celsius (without decimal place) for temperature and tenths of millimeters (without decimal place) for Precipitation. Each file includes the entire available Period of Record.

  17. SGMA Climate Change Resources

    • data.ca.gov
    • data.cnra.ca.gov
    • +3more
    csv, pdf, xlsx, zip
    Updated Oct 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2023). SGMA Climate Change Resources [Dataset]. https://data.ca.gov/dataset/sgma-climate-change-resources
    Explore at:
    xlsx, zip, pdf, csvAvailable download formats
    Dataset updated
    Oct 16, 2023
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    This dataset includes processed climate change datasets related to climatology, hydrology, and water operations. The climatological data provided are change factors for precipitation and reference evapotranspiration gridded over the entire State. The hydrological data provided are projected stream inflows for major streams in the Central Valley, and streamflow change factors for areas outside of the Central Valley and smaller ungaged watersheds within the Central Valley. The water operations data provided are Central Valley reservoir outflows, diversions, and State Water Project (SWP) and Central Valley Project (CVP) water deliveries and select streamflow data. Most of the Central Valley inflows and all of the water operations data were simulated using the CalSim II model and produced for all projections.

    These data were originally developed for the California Water Commission’s Water Storage Investment Program (WSIP). The WSIP data used as the basis for these climate change resources along with the technical reference document are located here: https://data.cnra.ca.gov/dataset/climate-change-projections-wsip-2030-2070. Additional processing steps were performed to improve user experience, ease of use for GSP development, and for Sustainable Groundwater Management Act (SGMA) implementation. Furthermore, the data, tools, and guidance may be useful for purposes other than sustainable groundwater management under SGMA.

    Data are provided for projected climate conditions centered around 2030 and 2070. The climate projections are provided for these two future climate periods, and include one scenario for 2030 and three scenarios for 2070: a 2030 central tendency, a 2070 central tendency, and two 2070 extreme scenarios (i.e., one drier with extreme warming and one wetter with moderate warming). The climate scenario development process represents a climate period analysis where historical interannual variability from January 1915 through December 2011 is preserved while the magnitude of events may be increased or decreased based on projected changes in precipitation and air temperature from general circulation models.

    2070 Extreme Scenarios Update, September 2020

    DWR has collaborated with Lawrence Berkeley National Laboratory to improve the quality of the 2070 extreme scenarios. The 2070 extreme scenario update utilizes an improved climate period analysis method known as "quantile delta mapping" to better capture the GCM-projected change in temperature and precipitation. A technical note on the background and results of this process is provided here: https://data.cnra.ca.gov/dataset/extreme-climate-change-scenarios-for-water-supply-planning/resource/f2e1c61a-4946-4863-825f-e6d516b433ed.

    Note: the original version of the 2070 extreme scenarios can be accessed in the archive posted here: https://data.cnra.ca.gov/dataset/sgma-climate-change-resources/resource/51b6ee27-4f78-4226-8429-86c3a85046f4

  18. Climate.gov Data Snapshots: Temperature - US Monthly Average

    • datalumos.org
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - US Monthly Average [Dataset]. http://doi.org/10.3886/E233201V1
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: What was the average temperature for the month? A: Colors show the average monthly temperature across the contiguous United States. White and very light areas had average temperatures near 50°F. Blue areas on the map were cooler than 50°F; the darker the blue, the cooler the average temperature. Orange to red areas were warmer than 50°F; the darker the shade, the warmer the monthly average temperature. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). Q: What do the colors mean? A: Shades of blue show areas that had monthly average temperatures below 50°F. The darker the shade of blue, the lower the average temperature. Areas shown in shades of orange and red had average temperatures above 50°F. The darker the shade of orange or red, the higher the average temperature. White or very light colors show areas where the average temperature was near 50°F. Q: Why do these data matter? A: The 5x5km NClimGrid data allow scientists to report on recent temperature conditions and track long-term trends at a variety of spatial scales. The gridded cells are used to create statewide, regional and national snapshots of climate conditions. Energy companies use this information to estimate demand for heating and air conditioning. Agricultural businesses also use these data to optimize timing of planting, harvesting, and putting livestock to pasture. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products; to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions) NCEI Monthly National Analysis) Climate at a Glance - Data Information) NCEI Climate Monitoring - All Products Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-us-monthly-averageThis upload includes two additional files:* Temperature - US Monthly Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots.* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.

  19. CRU TS4.08: Climatic Research Unit (CRU) Time-Series (TS) version 4.08 of...

    • catalogue.ceda.ac.uk
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ian C Harris; Philip D. Jones; Tim Osborn (2024). CRU TS4.08: Climatic Research Unit (CRU) Time-Series (TS) version 4.08 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2023) [Dataset]. https://catalogue.ceda.ac.uk/uuid/715abce1604a42f396f81db83aeb2a4b
    Explore at:
    Dataset updated
    Jul 30, 2024
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Ian C Harris; Philip D. Jones; Tim Osborn
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1901 - Dec 31, 2023
    Area covered
    Description

    The gridded Climatic Research Unit (CRU) Time-series (TS) data version 4.08 data are month-by-month variations in climate over the period 1901-2023, provided on high-resolution (0.5x0.5 degree) grids, produced by CRU at the University of East Anglia and funded by the UK National Centre for Atmospheric Science (NCAS), a NERC collaborative centre.

    The CRU TS4.08 variables are cloud cover, diurnal temperature range, frost day frequency, wet day frequency, potential evapotranspiration (PET), precipitation, daily mean temperature, monthly average daily maximum and minimum temperature, and vapour pressure for the period January 1901 - December 2023.

    The CRU TS4.08 data were produced using angular-distance weighting (ADW) interpolation. All versions prior to 4.00 used triangulation routines in IDL. Please see the release notes for full details of this version update.

    The CRU TS4.08 data are monthly gridded fields based on monthly observational data calculated from daily or sub-daily data by National Meteorological Services and other external agents. The ASCII and NetCDF data files both contain monthly mean values for the various parameters. The NetCDF versions contain an additional integer variable, ’stn’, which provides, for each datum in the main variable, a count (between 0 and 8) of the number of stations used in that interpolation. The missing value code for 'stn' is -999.

    All CRU TS output files are actual values - NOT anomalies.

  20. O

    SILO climate database

    • data.qld.gov.au
    • researchdata.edu.au
    • +1more
    spatial data format +1
    Updated Feb 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment, Tourism, Science and Innovation (2023). SILO climate database [Dataset]. https://www.data.qld.gov.au/dataset/silo-climate-database
    Explore at:
    spatial data format(1 MiB), xml(1 KiB)Available download formats
    Dataset updated
    Feb 20, 2023
    Dataset authored and provided by
    Environment, Tourism, Science and Innovation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SILO is a Queensland Government database containing continuous daily climate data for Australia from 1889 to present, in a number of ready-to-use formats, suitable for modelling and research applications. The SILO database contains two major classes of data: point (station) time series and spatial grids, both based on observed data from the Bureau of Meteorology ADAM (Australian Data Archive for Meteorology) database. For point data, interpolated or derived values are used where observations are missing. Gridded data are spatially interpolated from observations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Carol Luukkonen; Ayman Alzraiee; Joshua Larsen; Donald Martin; Deidre Herbert; Cheryl Buchwald; Natalie Houston; Kristen Valseth; Scott Paulinski; Lisa Miller; Richard Niswonger; Jana Stewart; Cheryl Dieter (2024). Python code used to download gridMET climate data for public-supply water service areas [Dataset]. http://doi.org/10.5066/P9FUL880

Python code used to download gridMET climate data for public-supply water service areas

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 5, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Authors
Carol Luukkonen; Ayman Alzraiee; Joshua Larsen; Donald Martin; Deidre Herbert; Cheryl Buchwald; Natalie Houston; Kristen Valseth; Scott Paulinski; Lisa Miller; Richard Niswonger; Jana Stewart; Cheryl Dieter
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Time period covered
Jan 1, 2000 - Dec 31, 2020
Description

This child item describes Python code used to retrieve gridMET climate data for a specific area and time period. Climate data were retrieved for public-supply water service areas, but the climate data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the climate data collector code were used as input feature variables in the public supply delivery and water use machine learning models. This page includes the following file: climate_data_collector.zip - a zip file containing the climate data collector Python code used to retrieve climate data and a README file.

Search
Clear search
Close search
Google apps
Main menu