100+ datasets found
  1. NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid)

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) [Dataset]. https://catalog.data.gov/dataset/noaa-monthly-u-s-climate-gridded-dataset-nclimgrid2
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    United States
    Description

    The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. On an annual basis, approximately one year of "final" nClimGrid will be submitted to replace the initially supplied "preliminary" data for the same time period. Users should be sure to ascertain which level of data is required for their research.

  2. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    • cds-stable-bopen.copernicus-climate.eu
    netcdf
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Jan 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  3. Nordic gridded temperature and precipitation data from 1961 to present...

    • cds.climate.copernicus.eu
    netcdf
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Nordic gridded temperature and precipitation data from 1961 to present derived from in-situ observations [Dataset]. http://doi.org/10.24381/cds.e8f4a10c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1961 - Jul 3, 2025
    Description

    The Nordic Gridded Climate Dataset (NGCD) is a high resolution, observational, gridded dataset of daily minimum, maximum and mean temperatures and daily precipitation totals, covering Finland, Sweden and Norway. The time period covered begins in January 1961 and continues to the present. The dataset is regularly updated every 6 months, in March and in September. In addition, there are daily, provisional updates. Spatial interpolation methods are applied to observational datasets to create gridded datasets. In general, there are three types of such methods: deterministic (type 1), stochastic (type 2) and pure mathematical (type 3). NGCD applies both a deterministic kriging (type 1) interpolation approach and a stochastic Bayesian (type 2) interpolation approach to the same in-situ observational dataset collected by weather stations. For more details on the algorithms, users are advised to read the product user guide. The input data is provided by the National Meteorological and Hydrological Services of Finland, Norway and Sweden. The time-series used for Finland and Sweden are the non-blended time-series from the station network of the European Climate Assessment & Dataset (ECA&D) project. For Norway, time-series are extracted from the climate database of the Norwegian Meteorological Institute.

  4. c

    Gridded dataset underpinning the Copernicus Interactive Climate Atlas

    • cds.climate.copernicus.eu
    • cds-stable-bopen.copernicus-climate.eu
    netcdf
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Gridded dataset underpinning the Copernicus Interactive Climate Atlas [Dataset]. http://doi.org/10.24381/cds.h35hb680
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset authored and provided by
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1860 - Dec 31, 2300
    Description

    This catalogue entry provides the gridded climate data (monthly/annual timeseries) used for the Copernicus Climate Change Service Atlas (C3S Atlas). The gridded datasets consist of in-situ and satellite observation-based datasets, reanalyses (CERRA, ERA5, ERA5-Land, and ORAS5) and global (CMIP5 and CMIP6) and regional (CORDEX) climate projections for the variables and indices included in the C3S Atlas. This dataset complements the Gridded monthly climate projection dataset underpinning the IPCC AR6 Interactive Atlas (IPCC Atlas dataset hereafter), including new datasets, variables and indices. The variables and indices describe various types of climatic impact characteristics: heat and cold, wet and dry, snow and ice, wind and radiation, ocean, circulation and drought characteristics of the climate system. All data sources included in this entry are available in the Climate Data Store (CDS, see “Related data” in the sidebar). Contrary to the frozen IPCC Atlas dataset, this entry will update adding new data on a regular basis. This dataset includes gridded information with monthly/annual temporal resolution for observations/reanalyses of the recent past and climate projections for the 35 variables and indices computed from daily/monthly data across the different datasets. The climate projections are based on Representative Concentration Pathways (RCP) / Shared Socioeconomic Pathways (SSP) scenarios. The datasets are harmonised using regular latitude-longitude grids. Bias correction is available for threshold-based indices. Two methods are available, depending on the variable; linear scaling and the ISIMIP method. This dataset allows the reproduction, expansion and customisation of the climate change products provided interactively by the Copernicus Interactive Climate Atlas. This is an interactive web application displaying global/regional maps of observed trends and climate changes for future periods across scenarios or for global warming levels, and regionally aggregated time series, seasonal cycle plots and climate stripes.

  5. Gridded Weather Generator Perturbations of Historical Detrended and...

    • data.cnra.ca.gov
    • data.ca.gov
    • +1more
    csv, jpeg, netcdf +2
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Gridded Weather Generator Perturbations of Historical Detrended and Stochastically Generated Temperature and Precipitation for the State of CA and HUC8s [Dataset]. https://data.cnra.ca.gov/dataset/ca-weather-generator-gridded-climate-pr-tmin-tmax-2023
    Explore at:
    csv(4454), xlsx(19137), csv, txt, jpeg(183900), netcdf, xlsx(469606)Available download formats
    Dataset updated
    May 14, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Area covered
    California
    Description

    The Weather Generator Gridded Data consists of two products:

    [1] statistically perturbed gridded 100-year historic daily weather data including precipitation [in mm], and detrended maximum and minimum temperature in degrees Celsius, and

    [2] stochastically generated and statistically perturbed gridded 1000-year daily weather data including precipitation [in mm], maximum temperature [in degrees Celsius], and minimum temperature in degrees Celsius.

    The base climate of this dataset is a combination of historically observed gridded data including Livneh Unsplit 1915-2018 (Pierce et. al. 2021), Livneh 1915-2015 (Livneh et. al. 2013) and PRISM 2016-2018 (PRISM Climate Group, 2014). Daily precipitation is from Livneh Unsplit 1915-2018, daily temperature is from Livneh 2013 spanning 1915-2015 and was extended to 2018 with daily 4km PRISM that was rescaled to the Livneh grid resolution (1/16 deg). The Livneh temperature was bias corrected by month to the corresponding monthly PRISM climate over the same period. Baseline temperature was then detrended by month over the entire time series based on the average monthly temperature from 1991-2020. Statistical perturbations and stochastic generation of the time series were performed by the Weather Generator (Najibi et al. 2024a and Najibi et al. 2024b).

    The repository consists of 30 climate perturbation scenarios that range from -25 to +25 % change in mean precipitation, and from 0 to +5 degrees Celsius change in mean temperature. Changes in thermodynamics represent scaling of precipitation during extreme events by a scaling factor per degree Celsius increase in mean temperature and consists primarily of 7%/degree-Celsius with 14%/degree-Celsius as sensitivity perturbations. Further insight for thermodynamic scaling can be found in full report linked below or in Najibi et al. 2024a and Najibi et al. 2024b.

    The data presented here was created by the Weather Generator which was developed by Dr. Scott Steinschneider and Dr. Nasser Najibi (Cornell University). If a separate weather generator product is desired apart from this gridded climate dataset, the weather generator code can be adopted to suit the specific needs of the user. The weather generator code and supporting information can be found here: https://github.com/nassernajibi/WGEN-v2.0/tree/main. The full report for the model and performance can be found here: https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/All-Programs/Climate-Change-Program/Resources-for-Water-Managers/Files/WGENCalifornia_Final_Report_final_20230808.pdf

  6. d

    U.S. Daily Gridded Precipitation and Temperature Climate Normals for...

    • catalog.data.gov
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). U.S. Daily Gridded Precipitation and Temperature Climate Normals for 2006-2020 (NCEI Accession 0259964) [Dataset]. https://catalog.data.gov/dataset/u-s-daily-gridded-precipitation-and-temperature-climate-normals-for-2006-2020-ncei-accession-02
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    (Point of Contact)
    Area covered
    United States
    Description

    The U.S. Daily Gridded Climate Normals Datasets are derived from the nClimGrid-Daily Dataset newly produced by the NOAA National Centers for Environmental Information (NOAA NCEI). Climatologically aided interpolation was used to transform an extensive set of station temperature and precipitation values into grids at a high spatial resolution of 1/24° latitude/longitude, or approximately 5 km. The values for each individual grid cell change smoothly from day-to-day through the application of the same methods used to generate daily normals for observation stations. The averages of all daily gridded temperature normals are constrained by a harmonic fit to equal the monthly gridded. A moving window averaging technique is used to generate smooth daily gridded precipitation normals which are then also adjusted by month so that the sum of the days would equal the monthly gridded normals. Daily gridded climate normals are calculated for total precipitation, and maximum, minimum and average temperature for the conterminous U.S

  7. CRU TS4.09: Climatic Research Unit (CRU) Time-Series (TS) version 4.09 of...

    • catalogue.ceda.ac.uk
    Updated Apr 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ian C Harris; Philip D. Jones; Tim Osborn (2025). CRU TS4.09: Climatic Research Unit (CRU) Time-Series (TS) version 4.09 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2024) [Dataset]. https://catalogue.ceda.ac.uk/uuid/9cf07e92afaa405da4f40b6733f362d3
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Ian C Harris; Philip D. Jones; Tim Osborn
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1901 - Dec 31, 2024
    Area covered
    Description

    The gridded Climatic Research Unit (CRU) Time-series (TS) data version 4.09 data are month-by-month variations in climate over the period 1901-2024, provided on high-resolution (0.5x0.5 degree) grids, produced by CRU at the University of East Anglia and funded by the UK National Centre for Atmospheric Science (NCAS), a NERC collaborative centre.

    The CRU TS4.09 variables are cloud cover, diurnal temperature range, frost day frequency, wet day frequency, potential evapotranspiration (PET), precipitation, daily mean temperature, monthly average daily maximum and minimum temperature, and vapour pressure for the period January 1901 - December 2024.

    The CRU TS4.09 data were produced using angular-distance weighting (ADW) interpolation. All versions prior to 4.00 used triangulation routines in IDL. Please see the release notes for full details of this version update.

    The CRU TS4.09 data are monthly gridded fields based on monthly observational data calculated from daily or sub-daily data by National Meteorological Services and other external agents. The ASCII and NetCDF data files both contain monthly mean values for the various parameters. The NetCDF versions contain an additional integer variable, ’stn’, which provides, for each datum in the main variable, a count (between 0 and 8) of the number of stations used in that interpolation. The missing value code for 'stn' is -999.

    All CRU TS output files are actual values - NOT anomalies.

  8. d

    Spreadsheet of best models for each downscaled climate dataset and for all...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Spreadsheet of best models for each downscaled climate dataset and for all downscaled climate datasets considered together (Best_model_lists.xlsx) [Dataset]. https://catalog.data.gov/dataset/spreadsheet-of-best-models-for-each-downscaled-climate-dataset-and-for-all-downscaled-clim
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided that tabulates best models for each downscaled climate dataset and for all downscaled climate datasets considered together. Best models were identified based on how well the models capture the climatology and interannual variability of four climate extreme indices using the Model Climatology Index (MCI) and the Model Variability Index (MVI) of Srivastava and others (2020). The four indices consist of annual maxima consecutive precipitation for durations of 1, 3, 5, and 7 days compared against the same indices computed based on the PRISM and SFWMD gridded precipitation datasets for two climate regions: climate region 4 in South Central Florida, and climate region 5 in South Florida. The PRISM dataset is based on the Parameter-elevation Relationships on Independent Slopes Model interpolation method of Daly and others (2008). The South Florida Water Management District’s (SFWMD) precipitation super-grid is a gridded precipitation dataset developed by modelers at the agency for use in hydrologic modeling (SFWMD, 2005). This dataset is considered by the SFWMD as the best available gridded rainfall dataset for south Florida. Best models were selected based on MCI and MVI evaluated within each individual downscaled dataset. In addition, best models were selected by comparison across datasets and referred to as "ALL DATASETS" hereafter. Due to the small sample size, all models in the using the Weather Research and Forecasting Model (JupiterWRF) dataset were considered as best models.

  9. d

    GLO climate data stats summary

    • data.gov.au
    • researchdata.edu.au
    • +1more
    zip
    Updated Apr 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). GLO climate data stats summary [Dataset]. https://data.gov.au/data/dataset/afed85e0-7819-493d-a847-ec00a318e657
    Explore at:
    zip(8810)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    Various climate variables summary for all 15 subregions based on Bureau of Meteorology Australian Water Availability Project (BAWAP) climate grids. Including

    1. Time series mean annual BAWAP rainfall from 1900 - 2012.

    2. Long term average BAWAP rainfall and Penman Potentail Evapotranspiration (PET) from Jan 1981 - Dec 2012 for each month

    3. Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P (precipitation); (ii) Penman ETp; (iii) Tavg (average temperature); (iv) Tmax (maximum temperature); (v) Tmin (minimum temperature); (vi) VPD (Vapour Pressure Deficit); (vii) Rn (net radiation); and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend.

    4. Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009).

    As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

    There are 4 csv files here:

    BAWAP_P_annual_BA_SYB_GLO.csv

    Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.

    Source data: annual BILO rainfall

    P_PET_monthly_BA_SYB_GLO.csv

    long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month

    Climatology_Trend_BA_SYB_GLO.csv

    Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend

    Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv

    Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

    Dataset History

    Dataset was created from various BAWAP source data, including Monthly BAWAP rainfall, Tmax, Tmin, VPD, etc, and other source data including monthly Penman PET, Correlation coefficient data. Data were extracted from national datasets for the GLO subregion.

    BAWAP_P_annual_BA_SYB_GLO.csv

    Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.

    Source data: annual BILO rainfall

    P_PET_monthly_BA_SYB_GLO.csv

    long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month

    Climatology_Trend_BA_SYB_GLO.csv

    Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend

    Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv

    Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

    Dataset Citation

    Bioregional Assessment Programme (2014) GLO climate data stats summary. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/afed85e0-7819-493d-a847-ec00a318e657.

    Dataset Ancestors

  10. HadUK-Grid Gridded Climate Observations on a 60km grid over the UK,...

    • catalogue.ceda.ac.uk
    Updated Jul 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Hollis; Emily Carlisle; Michael Kendon; Stephen Packman; Amy Doherty (2024). HadUK-Grid Gridded Climate Observations on a 60km grid over the UK, v1.3.0.ceda (1836-2023) [Dataset]. https://catalogue.ceda.ac.uk/uuid/c22d0b462321447882d2d1367cc77d3c
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Dan Hollis; Emily Carlisle; Michael Kendon; Stephen Packman; Amy Doherty
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1836 - Dec 31, 2023
    Area covered
    Variables measured
    time, latitude, area_type, longitude, wind_speed, air_temperature, relative_humidity, surface_temperature, duration_of_sunshine, projection_x_coordinate, and 7 more
    Description

    HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. The dataset at 60 km resolution is derived from the associated 1 km x 1 km resolution to allow for comparison to data from UKCP18 climate projections. The dataset spans the period from 1836 to 2023, but the start time is dependent on climate variable and temporal resolution.

    The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost.

    This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2019, see linked documentation).

    The changes for v1.3.0.ceda HadUK-Grid datasets are as follows:

    • Added data for calendar year 2023

    • Added newly digitised data for daily rainfall (62 Scottish stations for 1945-1960)

    • Daily rainfall data for Bolton, 1916-1919 have been corrected (previous values were corrupted and needed redigitising)

    • Daily rainfall data for Buxton, 1960 have been corrected (conversion from inches to mm had been applied incorrectly)

    • Rainfall data from EA and SEPA APIs are included for the last three months of the dataset (Oct-Dec 2023) (for all earlier months the rainfall data from partner agencies is obtained from the Met Office's MIDAS database)

    • The number of stations used for groundfrost, sunshine and windspeed have reduced at different points in the historical series when comparing v1.3.0.ceda to the previous version v1.2.0.ceda. These reductions in station numbers have been caused by changes made in the data processing steps upstream of the gridding process.

    • For groundfrost this reduction has been caused by an automated quality control process flagging the historical data which have been removed as suspect (mostly affecting data from 1961 to 1970).

    • For sunshine the small reduction in the 1960s has been caused by the removal of digitized monthly sunshine data through this period where we wish to reverify the data source.

    • For windspeed the reduction from 1969 to 2010 has been caused by changes to rules applied relating to data completeness when compiling daily mean windspeeds, which in turn have followed through to monthly statistics.

    • We plan to carry out a review of the data which have been excluded from this version. Some of it may be reintroduced in a future release.

    • Net changes to the input station data:

    • Total of 126970983 observations

    • 125384735 (98.75%) unchanged

    • 28487 (0.02%) modified for this version

    • 1557761 (1.23%) added in this version

    • 188522 (0.15%) deleted from this version

    The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The output from a number of data recovery activities relating to 19th and early 20th Century data have been used in the creation of this dataset, these activities were supported by: the Met Office Hadley Centre Climate Programme; the Natural Environment Research Council project "Analysis of historic drought and water scarcity in the UK"; the UK Research & Innovation (UKRI) Strategic Priorities Fund UK Climate Resilience programme; The UK Natural Environment Research Council (NERC) Public Engagement programme; the National Centre for Atmospheric Science; National Centre for Atmospheric Science and the NERC GloSAT project; and the contribution of many thousands of public volunteers. The dataset is provided under Open Government Licence.

  11. d

    BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to...

    • data.gov.au
    • cloud.csiss.gmu.edu
    • +4more
    Updated Aug 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2023). BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012 [Dataset]. https://data.gov.au/data/dataset/7aaf0621-a0e5-4b01-9333-53ebcb1f1c14
    Explore at:
    Dataset updated
    Aug 9, 2023
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Abstract

    This dataset was supplied to the Bioregional Assessment Programme by a third party and is presented here as originally supplied. Metadata was not provided and has been compiled by the Bioregional Assessment Programme based on the known details at the time of acquisition.

    The BILO gridded data set contains daily fields of selected meteorological variables at 0.05 degrees resolution for the whole Australian continent, including Tasmania. It was obtained by CSIRO for use in the Australian Water Availability Project. In addition to daily data fields, some aggregates at monthly and annual intervals have been created.

    The variable is daily rainfall. Current data is updated daily by automatic download from the BoM website. Periodic updates (approximately every 6 months) of the dataset include new data and reprocessed data in immediately preceding years. These different revisions are distinguished by an element in the file names "bYYMM" which gives the last two digits of the year and the two digit month corresponding to the revision delivery date. These data represent the snapshot of current data as at 14/10/2013.

    This dataset has been provided to the BA Programme for use within the programme only. For copyright information go to http://www.bom.gov.au/other/copyright.shtml. Information on how to request a copy of data can be found at www.bom.gov.au/climate/data.

    Dataset History

    The data are a snapshot of the climate dataset known as BILO which represents the data as at 14/10/2013. CSIRO maintain a copy of the data as licenced though the Australian Water Availability Project. The BoM version is constantly updated and revised when new data are obtained, when errors in data are identified and when interpolation routines are revised. Therefore there may be difference in the values of some grid cells in the current BoM data compared to this snapshot held by CSIRO. The current BoM archive for these data are listed in the URLs below.

    Data provided by BoM on disk or directly downloaded from BoM website.

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/rarchives_awa

    .cgi?state=nat&period=daily&data_type=totals&format_type=grid

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/tarchives_awa

    .cgi?state=nat&period=daily&data_type=maxave&format_type=grid

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/tarchives_awa

    .cgi?state=nat&period=daily&data_type=minave&format_type=grid

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/sarchives_awa.

    cgi?state=nat&period=daily&data_type=solarave&format_type=grid

    Processing Steps

    Data provided by BoM in Arc/Info ASCII raster format. Reformatted to binary flt and NetCDF.

    Dataset Citation

    Bureau of Meteorology (2013) BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012. Bioregional Assessment Source Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/7aaf0621-a0e5-4b01-9333-53ebcb1f1c14.

  12. NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid)

    • console.cloud.google.com
    Updated Nov 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:NOAA&inv=1&invt=Ab17cQ (2021). NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) [Dataset]. https://console.cloud.google.com/marketplace/product/noaa-public/noaa-ncei-nclimgrid-daily
    Explore at:
    Dataset updated
    Nov 20, 2021
    Dataset provided by
    Googlehttp://google.com/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. On an annual basis, approximately one year of "final" nClimGrid will be submitted to replace the initially supplied "preliminary" data for the same time period. Users should be sure to ascertain which level of data is required for their research. This public dataset is hosted in Google Cloud Storage and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage.

  13. A High-Resolution (0.25 degree) Historical Global Gridded Dataset of Climate...

    • doi.pangaea.de
    html, tsv
    Updated Feb 4, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malcolm Noshir Mistry (2019). A High-Resolution (0.25 degree) Historical Global Gridded Dataset of Climate Extreme Indices (1970-2016) using GLDAS data [Dataset]. http://doi.org/10.1594/PANGAEA.898014
    Explore at:
    html, tsvAvailable download formats
    Dataset updated
    Feb 4, 2019
    Dataset provided by
    PANGAEA
    Authors
    Malcolm Noshir Mistry
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    File name, File size, File format, Uniform resource locator/link to file
    Description

    Users are recommended to consult the author (malcolm.mistry@unive.it / malmistry1977@gmail.com) for an updated version which includes more recent years. 71 core and non-core climate extreme indices (CEIs) based on the Expert Team on Climate Change Detection and Indices (ETCCDI), and the Expert Team on Sector-specific Climate Indices (ET-SCI). The indices are computed using R ClimPACT2 package. The dataset does not include two indices (Heating and Cooling Degree Days) as these are computed separately for various baseline temperature (thresholds) -See 'Historical Global-Gridded Degree-Days: A High Spatio-Resolution Database of CDD and HDD'-. All indices are computed using daily near-surface maximum and minimum temperature (deg C), and near-surface precipitation (mm/day) variables from Global Land Data Acquisation System (GLDAS) ver. 2 (@ 0.25 degree) […]

  14. Canadian Gridded Temperature and Precipitation Anomalies (CANGRD)

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    html, pdf, wcs, wms
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2025). Canadian Gridded Temperature and Precipitation Anomalies (CANGRD) [Dataset]. https://open.canada.ca/data/en/dataset/3d4b68a5-13bc-48bb-ad10-801128aa6604
    Explore at:
    html, wms, wcs, pdfAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    CANGRD is a set of Canadian gridded annual, seasonal, and monthly temperature and precipitation anomalies, which were interpolated from stations in the Adjusted and Homogenized Canadian Climate Data (AHCCD); it is used to produce the Climate Trends and Variations Bulletin (CTVB).

  15. CLIMPY: Climate of the Pyrenees

    • zenodo.org
    nc
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    José María Cuadrat; José María Cuadrat; Roberto Serrano-Notivoli; Roberto Serrano-Notivoli; Ernesto Tejedor; Ernesto Tejedor; Miguel Ángel Saz; Miguel Ángel Saz; Marc Prohom; Jordi Cunillera; Alba Llabrés; Laura Trapero; Marc Pons; Juan Ignacio López-Moreno; Ramon Copons; Simon Gascoin; Simon Gascoin; Yolanda Luna; Ernesto Rodríguez; Petra Ramos; Pilar Amblar; Jean-Michel Soubeyroux; Marc Prohom; Jordi Cunillera; Alba Llabrés; Laura Trapero; Marc Pons; Juan Ignacio López-Moreno; Ramon Copons; Yolanda Luna; Ernesto Rodríguez; Petra Ramos; Pilar Amblar; Jean-Michel Soubeyroux (2020). CLIMPY: Climate of the Pyrenees [Dataset]. http://doi.org/10.5281/zenodo.3611127
    Explore at:
    ncAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    José María Cuadrat; José María Cuadrat; Roberto Serrano-Notivoli; Roberto Serrano-Notivoli; Ernesto Tejedor; Ernesto Tejedor; Miguel Ángel Saz; Miguel Ángel Saz; Marc Prohom; Jordi Cunillera; Alba Llabrés; Laura Trapero; Marc Pons; Juan Ignacio López-Moreno; Ramon Copons; Simon Gascoin; Simon Gascoin; Yolanda Luna; Ernesto Rodríguez; Petra Ramos; Pilar Amblar; Jean-Michel Soubeyroux; Marc Prohom; Jordi Cunillera; Alba Llabrés; Laura Trapero; Marc Pons; Juan Ignacio López-Moreno; Ramon Copons; Yolanda Luna; Ernesto Rodríguez; Petra Ramos; Pilar Amblar; Jean-Michel Soubeyroux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pyrenees
    Description

    CLIMPY (Characterisation of the evolution of climate and provision of information for adaptation in the Pyrenees) is a transboundary project that aimed to perform a detailed analysis of recent trends in temperature, precipitation and snow cover in the Pyrenees, and their future projection. The three files provided contain daily precipitation and maximum and minimum temperature in a high-resolution gridded dataset of 1x1 km spatial resolution for the 1981-2015 period. Daily estimates for each grid point were computed from the raw data of 1,343 stations located in Spain, France and Andorra, provided by national and regional meteorological services. 7 institutions worked together (University of Zaragoza (UNIZAR), Servei Meteorològic de Catalunya (SMC), Andorran Research Institut (IEA-CENMA), Instituto Pirenaico de Ecología (IPE-CSIC), Centre d’Études Spatiales (CESBIO), Agencia Estatal de Meteorología (AEMET), Météo-France (MF)) using the daily precipitation and temperature reconstruction (quality control, reconstruction and gridding) from Serrano-Notivoli et al. (2017 and 2019) (https://doi.org/10.5194/essd-9-721-2017 and https://doi.org/10.5194/essd-11-1171-2019).

  16. c

    A gridded database of the modern distributions of climate, woody plant taxa,...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). A gridded database of the modern distributions of climate, woody plant taxa, and ecoregions for the continental United States and Canada [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/a-gridded-database-of-the-modern-distributions-of-climate-woody-plant-taxa-and-ecoregions-
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, Canada, United States
    Description

    On the continental scale, climate is an important determinant of the distributions of plant taxa and ecoregions. To quantify and depict the relations between specific climate variables and these distributions, we placed modern climate and plant taxa distribution data on an approximately 25-kilometer (km) equal-area grid with 27,984 points that cover Canada and the continental United States (Thompson and others, 2015). The gridded climatic data include annual and monthly temperature and precipitation, as well as bioclimatic variables (growing degree days, mean temperatures of the coldest and warmest months, and a moisture index) based on 1961-1990 30-year mean values from the University of East Anglia (UK) Climatic Research Unit (CRU) CL 2.0 dataset (New and others, 2002), and absolute minimum and maximum temperatures for 1951-1980 interpolated from climate-station data (WeatherDisc Associates, 1989). As described below, these data were used to produce portions of the "Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America" (hereafter referred to as "the Atlas"; Thompson and others, 1999a, 1999b, 2000, 2006, 2007, 2012a, 2015). Evolution of the Atlas Over the 16 Years Between Volumes A & B and G: The Atlas evolved through time as technology improved and our knowledge expanded. The climate data employed in the first five Atlas volumes were replaced by more standard and better documented data in the last two volumes (Volumes F and G; Thompson and others, 2012a, 2015). Similarly, the plant distribution data used in Volumes A through D (Thompson and others, 1999a, 1999b, 2000, 2006) were improved for the latter volumes. However, the digitized ecoregion boundaries used in Volume E (Thompson and others, 2007) remain unchanged. Also, as we and others used the data in Atlas Volumes A through E, we came to realize that the plant distribution and climate data for areas south of the US-Mexico border were not of sufficient quality or resolution for our needs and these data are not included in this data release. The data in this data release are provided in comma-separated values (.csv) files. We also provide netCDF (.nc) files containing the climate and bioclimatic data, grouped taxa and species presence-absence data, and ecoregion assignment data for each grid point (but not the country, state, province, and county assignment data for each grid point, which are available in the .csv files). The netCDF files contain updated Albers conical equal-area projection details and more precise grid-point locations. When the original approximately 25-km equal-area grid was created (ca. 1990), it was designed to be registered with existing data sets, and only 3 decimal places were recorded for the grid-point latitude and longitude values (these original 3-decimal place latitude and longitude values are in the .csv files). In addition, the Albers conical equal-area projection used for the grid was modified to match projection irregularities of the U.S. Forest Service atlases (e.g., Little, 1971, 1976, 1977) from which plant taxa distribution data were digitized. For the netCDF files, we have updated the Albers conical equal-area projection parameters and recalculated the grid-point latitudes and longitudes to 6 decimal places. The additional precision in the _location data produces maximum differences between the 6-decimal place and the original 3-decimal place values of up to 0.00266 degrees longitude (approximately 143.8 m along the projection x-axis of the grid) and up to 0.00123 degrees latitude (approximately 84.2 m along the projection y-axis of the grid). The maximum straight-line distance between a three-decimal-point and six-decimal-point grid-point _location is 144.2 m. Note that we have not regridded the elevation, climate, grouped taxa and species presence-absence data, or ecoregion data to the locations defined by the new 6-decimal place latitude and longitude data. For example, the climate data described in the Atlas publications were interpolated to the grid-point locations defined by the original 3-decimal place latitude and longitude values. Interpolating the data to the 6-decimal place latitude and longitude values would in many cases not result in changes to the reported values and for other grid points the changes would be small and insignificant. Similarly, if the digitized Little (1971, 1976, 1977) taxa distribution maps were regridded using the 6-decimal place latitude and longitude values, the changes to the gridded distributions would be minor, with a small number of grid points along the edge of a taxa's digitized distribution potentially changing value from taxa "present" to taxa "absent" (or vice versa). These changes should be considered within the spatial margin of error for the taxa distributions, which are based on hand-drawn maps with the distributions evidently generalized, or represented by a small, filled circle, and these distributions were subsequently hand digitized. Users wanting to use data that exactly match the data in the Atlas volumes should use the 3-decimal place latitude and longitude data provided in the .csv files in this data release to represent the center point of each grid cell. Users for whom an offset of up to 144.2 m from the original grid-point _location is acceptable (e.g., users investigating continental-scale questions) or who want to easily visualize the data may want to use the data associated with the 6-decimal place latitude and longitude values in the netCDF files. The variable names in the netCDF files generally match those in the data release .csv files, except where the .csv file variable name contains a forward slash, colon, period, or comma (i.e., "/", ":", ".", or ","). In the netCDF file variable short names, the forward slashes are replaced with an underscore symbol (i.e., "_") and the colons, periods, and commas are deleted. In the netCDF file variable long names, the punctuation in the name matches that in the .csv file variable names. The "country", "state, province, or territory", and "county" data in the .csv files are not included in the netCDF files. Data included in this release: - Geographic scope. The gridded data cover an area that we labelled as "CANUSA", which includes Canada and the USA (excluding Hawaii, Puerto Rico, and other oceanic islands). Note that the maps displayed in the Atlas volumes are cropped at their northern edge and do not display the full northern extent of the data included in this data release. - Elevation. The elevation data were regridded from the ETOPO5 data set (National Geophysical Data Center, 1993). There were 35 coastal grid points in our CANUSA study area grid for which the regridded elevations were below sea level and these grid points were assigned missing elevation values (i.e., elevation = 9999). The grid points with missing elevation values occur in five coastal areas: (1) near San Diego (California, USA; 1 grid point), (2) Vancouver Island (British Columbia, Canada) and the Olympic Peninsula (Washington, USA; 2 grid points), (3) the Haida Gwaii (formerly Queen Charlotte Islands, British Columbia, Canada) and southeast Alaska (USA, 9 grid points), (4) the Canadian Arctic Archipelago (22 grid points), and (5) Newfoundland (Canada; 1 grid point). - Climate. The gridded climatic data provided here are based on the 1961-1990 30-year mean values from the University of East Anglia (UK) Climatic Research Unit (CRU) CL 2.0 dataset (New and others, 2002), and include annual and monthly temperature and precipitation. The CRU CL 2.0 data were interpolated onto the approximately 25-km grid using geographically-weighted regression, incorporating local lapse-rate estimation and correction. Additional bioclimatic variables (growing degree days on a 5 degrees Celsius base, mean temperatures of the coldest and warmest months, and a moisture index calculated as actual evapotranspiration divided by potential evapotranspiration) were calculated using the interpolated CRU CL 2.0 data. Also included are absolute minimum and maximum temperatures for 1951-1980 interpolated in a similar fashion from climate-station data (WeatherDisc Associates, 1989). These climate and bioclimate data were used in Atlas volumes F and G (see Thompson and others, 2015, for a description of the methods used to create the gridded climate data). Note that for grid points with missing elevation values (i.e., elevation values equal to 9999), climate data were created using an elevation value of -120 meters. Users may want to exclude these climate data from their analyses (see the Usage Notes section in the data release readme file). - Plant distributions. The gridded plant distribution data align with Atlas volume G (Thompson and others, 2015). Plant distribution data on the grid include 690 species, as well as 67 groups of related species and genera, and are based on U.S. Forest Service atlases (e.g., Little, 1971, 1976, 1977), regional atlases (e.g., Benson and Darrow, 1981), and new maps based on information available from herbaria and other online and published sources (for a list of sources, see Tables 3 and 4 in Thompson and others, 2015). See the "Notes" column in Table 1 (https://pubs.usgs.gov/pp/p1650-g/table1.html) and Table 2 (https://pubs.usgs.gov/pp/p1650-g/table2.html) in Thompson and others (2015) for important details regarding the species and grouped taxa distributions. - Ecoregions. The ecoregion gridded data are the same as in Atlas volumes D and E (Thompson and others, 2006, 2007), and include three different systems, Bailey's ecoregions (Bailey, 1997, 1998), WWF's ecoregions (Ricketts and others, 1999), and Kuchler's potential natural vegetation regions (Kuchler, 1985), that are each based on distinctive approaches to categorizing ecoregions. For the Bailey and WWF ecoregions for North America and the Kuchler potential natural vegetation regions for the contiguous United States

  17. c

    Gridded monthly climate projection dataset underpinning the IPCC AR6...

    • cds.climate.copernicus.eu
    • cds-test-cci2.copernicus-climate.eu
    netcdf
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2023). Gridded monthly climate projection dataset underpinning the IPCC AR6 Interactive Atlas [Dataset]. http://doi.org/10.24381/cds.5292a2b0
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Feb 1, 2023
    Dataset authored and provided by
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1860 - Dec 31, 2300
    Description

    This catalogue entry provides gridded data from global (CMIP5 and CMIP6) and regional (CORDEX) projections for the set of 22 variables and indices included in the IPCC Interactive Atlas, a novel contribution from Working Group I (WGI) to the IPCC Sixth Assessment Report (AR6). These variables and indices are relevant for the climatic impact-drivers used in the regional assessments conducted in AR6 (Chapters 10, 11, 12 and Atlas), related to heat and cold, wet and dry, snow and ice, and wind. This dataset is particularly intended for Climate Data Store (CDS) users who want to develop customised products not directly available from the IPCC Interactive Atlas (e.g. regional information at national or subnational scales). This dataset includes gridded information with monthly/annual temporal resolution for historical experiments and climate projections based on Representative Concentration Pathways (RCP) / Shared Socioeconomic Pathways (SSP) scenarios for CMIP5/6 and CORDEX multi-model ensembles for the 22 variables and indices (computed from daily data). The ensembles are harmonised using regular grids with horizontal resolutions of 2° (CMIP5), 1° (CMIP6), 0.5° (CORDEX), and 0.25° (European CORDEX domain); details on the particular ensembles for each dataset are included in the documentation links. This dataset allows the reproduction, expansion and customisation of the climate change products displayed in the IPCC Interactive Atlas. This includes the global/continental maps of CMIP/CORDEX climate changes (for future periods across scenarios or for global warming levels, e.g. +2°C), and the regionally-aggregated time series, scatter plots, or global warming level plots. Related datasets, also available through the CDS, include the CMIP5/6 global climate projections and the CORDEX regional climate projections. The original CMIP and CORDEX data was produced by the institutions and modelling centres participating in these initiatives, as described in AR6 WGI Annex II, with partial support from different programmes, including support from Copernicus for some of the EURO-CORDEX runs and for data curation and publication of world-wide CORDEX datasets. As a result, the dataset is fully reproducible from the CDS for CORDEX, but not for CMIP (some models and versions are different in the CDS and the Atlas ensembles).
    This dataset is distributed as part of the IPCC-DDC Atlas products under a Creative Commons Attribution 4.0 International License (CC-BY 4.0) and Copernicus has supported the standardisation and technical curation.

  18. G

    GRIDMET: University of Idaho Gridded Surface Meteorological Dataset

    • developers.google.com
    Updated Aug 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of California Merced (2018). GRIDMET: University of Idaho Gridded Surface Meteorological Dataset [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET
    Explore at:
    Dataset updated
    Aug 15, 2018
    Dataset provided by
    University of California Merced
    Time period covered
    Jan 1, 1979 - Jul 1, 2025
    Area covered
    Description

    The Gridded Surface Meteorological dataset provides high spatial resolution (~4-km) daily surface fields of temperature, precipitation, winds, humidity and radiation across the contiguous United States from 1979. The dataset blends the high resolution spatial data from PRISM with the high temporal resolution data from the National Land Data Assimilation System (NLDAS) to produce spatially and temporally continuous fields that lend themselves to additional land surface modeling. This dataset contains provisional products that are replaced with updated versions when the complete source data become available. Products can be distinguished by the value of the 'status' property. At first, assets are ingested with status='early'. After several days, they are replaced by assets with status='provisional'. After about 2 months, they are replaced by the final assets with status='permanent'.

  19. d

    Evaluation of Precipitation and Temperature: An Analysis of In-Situ...

    • search.dataone.org
    Updated Nov 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reza Morovati; Ehsan Ebrahimi; Ehsan Kahrizi; Pamela Claure (2024). Evaluation of Precipitation and Temperature: An Analysis of In-Situ Observations Versus Gridded Data within the Great Salt Lake Basin [Dataset]. https://search.dataone.org/view/sha256%3A92c95ba4c90218686b62df33cdf28ceb2d3ffa62dbba1bd1dc88977c51f4d151
    Explore at:
    Dataset updated
    Nov 16, 2024
    Dataset provided by
    Hydroshare
    Authors
    Reza Morovati; Ehsan Ebrahimi; Ehsan Kahrizi; Pamela Claure
    Time period covered
    Jan 1, 1990 - Dec 31, 2020
    Area covered
    Description

    This study evaluates the consistency between in-situ measurements and gridded datasets for precipitation and temperature within the Great Salt Lake Basin, highlighting the significant implications for hydrological modelling and climate analysis. We analysed five widely recognized gridded datasets: GRIDMET, DAYMET, PRISM, NLDAS-2, and CONUS404, utilizing statistical metrics such as the Pearson Correlation Coefficient, Root Mean Square Error (RMSE), and Kling-Gupta Efficiency to assess their accuracy and reliability against ground truth data from 30 meteorological stations. Our findings indicate that the PRISM dataset outperformed others, demonstrating the lowest median RMSE values for both precipitation (approximately 1.9 mm/day) and temperature (approximately 0.9°C), which is attributed to its advanced interpolation methods that effectively incorporate orographic adjustments. In contrast, NLDAS-2 and CONUS404, despite their finer temporal resolutions, showed greater error variability and lower performance metrics, which may limit their utility for detailed hydrological applications. Through the use of visual analytical tools such as heatmaps and boxplots, we were able to vividly illustrate the performance disparities across the datasets, thereby providing a clear comparative analysis that underscores the strengths and weaknesses of each dataset. The study emphasizes the need for careful selection of gridded datasets based on specific regional characteristics to improve the accuracy and reliability of hydro climatological studies and supports better-informed decisions in climate-related adaptations and policy-making. The insights gained from this analysis aim to guide researchers and practitioners in selecting the most appropriate datasets that align with the unique climatic and topographical conditions of the Great Salt Lake Basin, enhancing the efficacy of environmental forecasting and resource management strategies.

  20. CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of...

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Aug 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ian C Harris; Philip D. Jones (2019). CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2018) [Dataset]. https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82
    Explore at:
    Dataset updated
    Aug 1, 2019
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Ian C Harris; Philip D. Jones
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1901 - Dec 31, 2018
    Area covered
    Description

    The gridded Climatic Research Unit (CRU) Time-series (TS) data version 4.03 data are month-by-month variations in climate over the period 1901-2018, provided on high-resolution (0.5x0.5 degree) grids, produced by CRU at the University of East Anglia.

    The CRU TS4.03 variables are cloud cover, diurnal temperature range, frost day frequency, potential evapotranspiration (PET), precipitation, daily mean temperature, monthly average daily maximum and minimum temperature, and vapour pressure for the period January 1901 - December 2018.

    The CRU TS4.03 data were produced using angular-distance weighting (ADW) interpolation. All version 4 releases used triangulation routines in IDL. Please see the release notes for full details of this version update.

    The CRU TS4.03 data are monthly gridded fields based on monthly observational data calculated from daily or sub-daily data by National Meteorological Services and other external agents. The ASCII and NetCDF data files both contain monthly mean values for the various parameters. The NetCDF versions contain an additional integer variable, ’stn’, which provides, for each datum in the main variable, a count (between 0 and 8) of the number of stations used in that interpolation. The missing value code for 'stn' is -999.

    All CRU TS output files are actual values - NOT anomalies.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NOAA National Centers for Environmental Information (Point of Contact) (2023). NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) [Dataset]. https://catalog.data.gov/dataset/noaa-monthly-u-s-climate-gridded-dataset-nclimgrid2
Organization logoOrganization logo

NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid)

Explore at:
Dataset updated
Sep 19, 2023
Dataset provided by
National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
Area covered
United States
Description

The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. On an annual basis, approximately one year of "final" nClimGrid will be submitted to replace the initially supplied "preliminary" data for the same time period. Users should be sure to ascertain which level of data is required for their research.

Search
Clear search
Close search
Google apps
Main menu