https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdf
This catalogue entry provides daily and monthly global climate projections data from a large number of experiments, models and time periods computed in the framework of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). CMIP6 data underpins the Intergovernmental Panel on Climate Change 6th Assessment Report. The use of these data is mostly aimed at:
addressing outstanding scientific questions that arose as part of the IPCC reporting process; improving the understanding of the climate system; providing estimates of future climate change and related uncertainties; providing input data for the adaptation to the climate change; examining climate predictability and exploring the ability of models to predict climate on decadal time scales; evaluating how realistic the different models are in simulating the recent past.
The term "experiments" refers to the three main categories of CMIP6 simulations:
Historical experiments which cover the period where modern climate observations exist. These experiments show how the GCMs performs for the past climate and can be used as a reference period for comparison with scenario runs for the future. The period covered is typically 1850-2014. Climate projection experiments following the combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (RCP). The SSP scenarios provide different pathways of the future climate forcing. The period covered is typically 2015-2100.
This catalogue entry provides both two- and three-dimensional data, along with an option to apply spatial and/or temporal subsetting to data requests. This is a new feature of the global climate projection dataset, which relies on compute processes run simultaneously in the ESGF nodes, where the data are originally located. The data are produced by the participating institutes of the CMIP6 project.
The objective of the Coupled Model Intercomparison Project (CMIP) is to better understand past, present and future climate changes arising from natural, unforced variability or in response to changes in radiative forcing in a multi-model context. This understanding includes assessments of model performance during the historical period and quantifications of the causes of the spread in future projections. Idealized experiments are also used to increase understanding of the model responses. In addition to these long time scale responses, experiments are performed to investigate the predictability of the climate system on various time and space scales as well as making predictions from observed climate states. See the World Climate Research Programme for more details. The Google Cloud CMIP6 data are derived from the original CMIP6 data files, as distributed via the Earth System Grid Federation (ESGF). Consistent with the CMIP6 terms of use, some modifications have been made to render the data more analysis-ready, including concatenation of time slices and conversion from netCDF to Zarr format. All relevant metadata, including information about how to cite, are provided in the zarr metadata. The CMIP6 hosted on Google Cloud are maintained by the Climate Data Science Lab at Lamont Doherty Earth Observatory (LDEO) of Columbia University, as part of the Pangeo Project . Transferring CMIP6 from ESGF into Google Cloud is ongoing, and only a fraction of the full CMIP6 archive is currently available. Users may request new data to be added via this form .This public dataset is hosted in Google Cloud Storage and available free to use. Use this quick start guide to learn more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets assist the science community in conducting studies on climate change impacts at regional scales, and enhance public understanding of possible future climate patterns of homogenous regions at spatial scales.
The data sets contain high resolution (~100 kilometres) dynamical downscaling of World Climate Research Programme (https://www.wcrp-climate.org/) CMIP6 climate projections model data for SSP (126, 245, and 585) scenarios for the period 2015-2100.
The CMIP6 precipitation and temperature data have been obtained from the Earth System Grid Federation (https://esgf-data.dkrz.de/projects/esgf-dkrz/) site. Detailed information about the data, including the terms of use, can be obtained from the CMIP6 (https://pcmdi.llnl.gov/CMIP6/) site.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Environment and Climate Change Canada’s (ECCC) Climate Research Division (CRD) and the Pacific Climate Impacts Consortium (PCIC) previously produced statistically downscaled climate scenarios based on simulations from climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) in 2015. ECCC and PCIC have now updated the CMIP5-based downscaled scenarios with two new sets of downscaled scenarios based on the next generation of climate projections from the Coupled Model Intercomparison Project phase 6 (CMIP6). The scenarios are named Canadian Downscaled Climate Scenarios–Univariate method from CMIP6 (CanDCS-U6) and Canadian Downscaled Climate Scenarios–Multivariate method from CMIP6 (CanDCS-M6). CMIP6 climate projections are based on both updated global climate models and new emissions scenarios called “Shared Socioeconomic Pathways” (SSPs). Statistically downscaled datasets have been produced from 26 CMIP6 global climate models (GCMs) under three different emission scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5). The CanDCS-U6 was downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2) procedure, and the CanDCS-M6 was downscaled using the N-dimensional Multivariate Bias Correction (MBCn) method. The CanDCS-U6 dataset was produced using the same downscaling target data (NRCANmet) as the CMIP5-based downscaled scenarios, while the CanDCS-M6 dataset implements a new target dataset (ANUSPLIN and PNWNAmet blended dataset). Statistically downscaled individual model output are available for download. Downscaled climate indices are available across Canada at 10km grid spatial resolution for the 1950-2014 historical period and for the 2015-2100 period following each of the three emission scenarios. A total of 31 climate indices have been calculated using the CanDCS-U6 and CanDCS-M6 datasets. The climate indices include 27 Climdex indices established by the Expert Team on Climate Change Detection and Indices (ETCCDI) and 4 additional indices that are slightly modified from the Climdex indices. These indices are calculated from daily precipitation and temperature values from the downscaled simulations and are available at annual or monthly temporal resolution, depending on the indices. Note: projected future changes by statistically downscaled products are not necessarily more credible than those by the underlying climate model outputs. In many cases, especially for absolute threshold-based indices, projections based on downscaled data have a smaller spread because of the removal of model biases. However, this is not the case for all indices. Downscaling from GCM resolution to the fine resolution needed for impacts assessment increases the level of spatial detail and temporal variability to better match observations. Since these adjustments are GCM dependent, the resulting indices could have a wider spread when computed from downscaled data as compared to those directly computed from GCM output. In the latter case, it is not the downscaling procedure that makes future projection more uncertain; rather, it is indicative of higher variability associated with finer spatial scale. Individual model datasets and all related derived products are subject to the terms of use (https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html) of the source organization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The new climate dataset BASD-CMIP6-PE for Peru and Ecuador based on the bias-adjusted and statistically downscaled CMIP6 projections of 10 GCMs addresses the need for reliable high-resolution (1d, 10km) climate data covering Peru and Ecuador. This dataset includes both historical simulations (1850-2014) and future projections (2015-2100) for precipitation and minimum, mean, and maximum temperature under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP3-7.0, and SSP5-8.5). The BASD-CMIP6-PE climate data were generated using the trend-preserving Bias Adjustment and Statistical Downscaling (BASD) method (Lange, 2019, 2021) and data from regional observational datasets such as RAIN4PE (Fernandez-Palomino et al., 2021a, b) for precipitation and PISCO-temperature (Huerta et al., 2018) for temperatures as reference data. The Reliability of the BASD-CMIP6-PE was evaluated through hydrological modeling across Peruvian and Ecuadorian river basins in the historical period. The evaluation showed that the BASD-CMIP6-PE is reliable for describing the spatial patterns of atmospheric variables and streamflow simulation, including low and high flows. This suggests the usefulness of the new dataset for climate change impact assessment studies in Peru and Ecuador. The BASD-CMIP6-PE data are available for the domain covering Peru and Ecuador, located between 19°S and 2°N and 82-67°W, at 0.1° spatial and daily temporal resolution. The precipitation unit is mm, and the temperature is in °C. The data are in the NetCDF format and arranged by model, model member, experiment, variable, temporal resolution, and subset period (e.g., canesm5_r1i1p1f1_ssp126_pr_daily_2015_2020.nc).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.ScenarioMIP.MIROC.MIROC6.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.
The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).
CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).
The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
The NEX-GDDP-CMIP6 dataset is comprised of global downscaled climate scenarios derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6, see Thrasher et al. 2022) and across two of the four "Tier 1" greenhouse gas emissions scenarios known as Shared Socioeconomic Pathways (SSPs). The CMIP6 GCM runs were developed in support of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). This dataset includes downscaled projections from ScenarioMIP model runs for which daily scenarios were produced and distributed through the Earth System Grid Federation. This collection contains 34 different models. One model, "GFDL-CM4," has data for two different configurations that can be differentiated by further filtering on the grid_label property. Bands are replaced as new versions become available and the version property is updated with them. See also the provider tech note. You can submit data questions about CMIP6 to the provider and see their answers.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
NorCPM datasets generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km. Citation: Bethke, Ingo; Wang, Yiguo; Counillon, François; Kimmritz, Madlen; Fransner, Filippa; Samuelsen, Annette; Langehaug, Helene Reinertsen; Chiu, Ping-Gin; Bentsen, Mats; Guo, Chuncheng; Tjiputra, Jerry; Kirkevåg, Alf; Oliviè, Dirk Jan Leo; Seland, Øyvind; Fan, Yuanchao; Lawrence, Peter; Eldevik, Tor; Keenlyside, Noel (2019). NCC NorCPM1 model output prepared for CMIP6 DCPP. Version YYYYMMDD[1].Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10844 [1] Please use the latest dataset version or if not available the latest data download date as version in your data citation. CMIP6 model data is evolving in the sense that datasets are changed and added as new versions. The author list and the title are not final, either. Cite this data collection including the latest dataset version according to the Data Citation Guidelines (http://bit.ly/2gBCuqM ).
https://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdf
The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ECMWF-IFS-HR model output for the "forced atmosphere experiment for 1950-2014" (highresSST-present) experiment. These are available at the following frequencies: 6hrPlevPt, Amon, LImon, Lmon and day. The runs included the ensemble members: r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 and r6i1p1f1.
CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6).
The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.
https://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdf
The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Natural Environment Research Council (NERC) UKESM1-ice-LL model output for the "ssp585 with interactive ice sheet" (ssp585-withism) experiment. These are available at the following frequencies: Amon, Emon, LImon, Lmon, Omon, SIday, SImon and day. The runs included the ensemble member: r1i1p1f2.
CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6).
The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.HighResMIP.CNRM-CERFACS.CNRM-CM6-1-HR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.
The CNRM-CM6-1-HR climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).
CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).
The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
https://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/CMIP6_Terms_of_Use.pdf
The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-LR model output for the "effective radiative forcing at present day with specified anthropogenic aerosol optical properties, all forcings" (piClim-spAer-aer) experiment. These are available at the following frequency: Amon. The runs included the ensemble members: r2i1p1f1 and r3i1p1f1.
CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6).
The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.
A monthly water-balance model (MWBM) is applied to simulate components of the water balance for the period 1950-2100 under ssp245, ssp370, and ssp585 scenarios for the Contiguous United States. The statistically downscaled LOCA2 temperature and precipitation projections from 27 GCMs from the Climate Model Intercomparison Program Phase 6 (CMIP6) are use as input to the water balance model. This data set supports the USGS National Climate Change Viewer (ver. 2). The statistically downscaled data set is: CMIP6-LOCA2: Localized Constructed Analogs (Pierce et al. 2023, bias corrected by a modified version of Livneh et al. 2013) Users interested in the downscaled temperature and precipitation files are referred to the data set home page: LOCA: https://loca.ucsd.edu Bias correction data set: https://cirrus.ucsd.edu/~pierce/nonsplit_precip/ The 27 included GCMs are: ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, CESM2-LENS, CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, CanESM5, EC-Earth3, EC-Earth3-Veg, FGOALS-g3, GFDL-CM4, GFDL-ESM4, HadGEM3-GC31-LL, HadGEM3-GC31-MM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM, TaiESM1 There are 72 simulations in total (ssp245=24, ssp370=23, ssp585=25). While the LOCA2 data set supports multiple realizations per model; one MWBM realization per model is provided herein (predominately r1i1p1f1, except when this realization was not available).
A pre-industrial control simulation with non-evolving pre-industrial conditions. Conditions chosen to be representative of the period prior to the onset of large-scale industrialization, with 1850 being the reference year. The piControl starts after an initial climate spin-up, during which the climate begins to come into balance with the forcing. The recommended minimum length for the piControl is 500 years. (CMIP6 Experiment). Users can access the data from the Earth System Grid Federation or Climate Data Gateway as registered users; see the 'Related links' section. Diagnostic plots are also available from the 'Related links'. NCAR users may access the data from Glade; path(s) listed in the 'Additional Information' section.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are scripts that download CMIP6, regrid CMIP6 from native grid to regular 1 degree grid, filter data, and decompose the trend.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Regridding Global CMIP6 GCMs datasets(0.5 degree)
If you want to use the PET code, please get in touch with us by e-mail below. Also, please refer to our scientific data paper for those who have obtained the code. The paper is under review. DOI: eschung@seoultech.ac.kr thddudgns200@naver.com
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.HighResMIP.MPI-M.MPI-ESM1-2-HR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.
The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).
CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).
The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Regridding Global CMIP6 GCMs dataset(0.5 degree)Historical dataset: 14 CMIP6 GCMs (1850-2014)Future dataset: 14 CMIP6 GCMs and 4 SSP scenarios (2015-2100)Code: PET code(Python)Composition of dataset: Average temperature, Maximum temperature, Minimum temperature, Wind speed, Relative humidity, Solar radiationIf you are using our codes and dataset, please use the following references:Song, Y.H., Chung, ES., Shahid, S. et al. Development of global monthly dataset of CMIP6 climate variables for estimating evapotranspiration. Sci Data 10, 568 (2023). https://doi.org/10.1038/s41597-023-02475-7
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of data availability for the IPCC-WGI AR6 Interactive Atlas Dataset. Asterisks denote dataset source availability, with variables and indices grouped as in Table 1. The columns correspond to CMIP5, CMIP6, and the various CORDEX domains—AFR: Africa, ANT: Antarctica, ARC: Arctic, AUS: Australasia, CAM: Central America, EAS: East Asia, EUR: Europe, NAM: North America, SAM: South America, SEA: Southeast Asia, and WAS: South Asia—as well as the temporal frequency. CMIP5 and CMIP6 data are available at 2 and 1 resolution, respectively, and CORDEX data is provided at 0.5 resolution, except for CORDEX-EUR, which is available at a finer 0.25 resolution.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets. These data includes all datasets published for 'CMIP6.CMIP.CSIRO.ACCESS-ESM1-5' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. Experiments include the DECK (piControl, esm-piControl, abrupt-4xCO2, 1pctCO2, amip), and historical & esm-hist simulations.
These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and are being used by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).
CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by World Data Centre for Climate (WDCC) at DKRZ.
Lineage: The model used in climate research named Australian Community Climate and Earth System Simulator Earth System Model Version 1.5, released in 2019, includes the components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cmip6-wps/cmip6-wps_23f724282307e697d793a31124a30efac989841c65936f5b2b3f738b7c861bf7.pdf
This catalogue entry provides daily and monthly global climate projections data from a large number of experiments, models and time periods computed in the framework of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). CMIP6 data underpins the Intergovernmental Panel on Climate Change 6th Assessment Report. The use of these data is mostly aimed at:
addressing outstanding scientific questions that arose as part of the IPCC reporting process; improving the understanding of the climate system; providing estimates of future climate change and related uncertainties; providing input data for the adaptation to the climate change; examining climate predictability and exploring the ability of models to predict climate on decadal time scales; evaluating how realistic the different models are in simulating the recent past.
The term "experiments" refers to the three main categories of CMIP6 simulations:
Historical experiments which cover the period where modern climate observations exist. These experiments show how the GCMs performs for the past climate and can be used as a reference period for comparison with scenario runs for the future. The period covered is typically 1850-2014. Climate projection experiments following the combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (RCP). The SSP scenarios provide different pathways of the future climate forcing. The period covered is typically 2015-2100.
This catalogue entry provides both two- and three-dimensional data, along with an option to apply spatial and/or temporal subsetting to data requests. This is a new feature of the global climate projection dataset, which relies on compute processes run simultaneously in the ESGF nodes, where the data are originally located. The data are produced by the participating institutes of the CMIP6 project.