Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The CMS National Plan and Provider Enumeration System (NPPES) was developed as part of the Administrative Simplification provisions in the original HIPAA act. The primary purpose of NPPES was to develop a unique identifier for each physician that billed medicare and medicaid. This identifier is now known as the National Provider Identifier Standard (NPI) which is a required 10 digit number that is unique to an individual provider at the national level.
Once an NPI record is assigned to a healthcare provider, parts of the NPI record that have public relevance, including the provider’s name, speciality, and practice address are published in a searchable website as well as downloadable file of zipped data containing all of the FOIA disclosable health care provider data in NPPES and a separate PDF file of code values which documents and lists the descriptions for all of the codes found in the data file.
The dataset contains the latest NPI downloadable file in an easy to query BigQuery table, npi_raw. In addition, there is a second table, npi_optimized which harnesses the power of Big Query’s next-generation columnar storage format to provide an analytical view of the NPI data containing description fields for the codes based on the mappings in Data Dissemination Public File - Code Values documentation as well as external lookups to the healthcare provider taxonomy codes . While this generates hundreds of columns, BigQuery makes it possible to process all this data effectively and have a convenient single lookup table for all provider information.
Fork this kernel to get started.
https://console.cloud.google.com/marketplace/details/hhs/nppes?filter=category:science-research
Dataset Source: Center for Medicare and Medicaid Services. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @rawpixel from Unplash.
What are the top ten most common types of physicians in Mountain View?
What are the names and phone numbers of dentists in California who studied public health?
Facebook
TwitterThis dataset contains Hospital General Information from the U.S. Department of Health & Human Services. This is the BigQuery COVID-19 public dataset. This data contains a list of all hospitals that have been registered with Medicare. This list includes addresses, phone numbers, hospital types and quality of care information. The quality of care data is provided for over 4,000 Medicare-certified hospitals, including over 130 Veterans Administration (VA) medical centers, across the country. You can use this data to find hospitals and compare the quality of their care
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.cms_medicare.hospital_general_info.
How do the hospitals in Mountain View, CA compare to the average hospital in the US? With the hospital compare data you can quickly understand how hospitals in one geographic location compare to another location. In this example query we compare Google’s home in Mountain View, California, to the average hospital in the United States. You can also modify the query to learn how the hospitals in your city compare to the US national average.
“#standardSQL
SELECT
MTV_AVG_HOSPITAL_RATING,
US_AVG_HOSPITAL_RATING
FROM (
SELECT
ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS MTV_AVG_HOSPITAL_RATING
FROM
bigquery-public-data.cms_medicare.hospital_general_info
WHERE
city = 'MOUNTAIN VIEW'
AND state = 'CA'
AND hospital_overall_rating <> 'Not Available') MTV
JOIN (
SELECT
ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS US_AVG_HOSPITAL_RATING
FROM
bigquery-public-data.cms_medicare.hospital_general_info
WHERE
hospital_overall_rating <> 'Not Available')
ON
1 = 1”
What are the most common diseases treated at hospitals that do well in the category of patient readmissions?
For hospitals that achieved “Above the national average” in the category of patient readmissions, it might be interesting to review the types of diagnoses that are treated at those inpatient facilities. While this query won’t provide the granular detail that went into the readmission calculation, it gives us a quick glimpse into the top disease related groups (DRG)
, or classification of inpatient stays that are found at those hospitals. By joining the general hospital information to the inpatient charge data, also provided by CMS, you could quickly identify DRGs that may warrant additional research. You can also modify the query to review the top diagnosis related groups for hospital metrics you might be interested in.
“#standardSQL
SELECT
drg_definition,
SUM(total_discharges) total_discharge_per_drg
FROM
bigquery-public-data.cms_medicare.hospital_general_info gi
INNER JOIN
bigquery-public-data.cms_medicare.inpatient_charges_2015 ic
ON
gi.provider_id = ic.provider_id
WHERE
readmission_national_comparison = 'Above the national average'
GROUP BY
drg_definition
ORDER BY
total_discharge_per_drg DESC
LIMIT
10;”
Facebook
TwitterThe All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.
Dataset Overview:
118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.
25.8 Billion Rows of Data:
Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.
Monthly Updates:
Data Sourced from CMS:
Use Cases:
Market Analysis:
Healthcare Research:
Performance Tracking:
Compliance and Regulatory Reporting:
Data Quality and Reliability:
The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.
Integration and Usability:
Ease of Integration:
Facebook
TwitterVerify the accuracy of SSNs of all individual Medicare providers, owners, managing/directing employees, authorized representatives, ambulance service medical directors, ambulance crew members, technicians, chain organization administrators, Independent Diagnostic Test Facility (IDTF), supervising/directing physicians, and IDTF interpretation service providers. Also included in this Agreement are individual health care providers who apply for a National Provider Identification Number (NPI).
Facebook
TwitterPlease be advised that as of Q4 2023 there is a new Provider of Service file (POS) that contains the provider and certification details for Home Health Agencies (HHAs), Hospices, and Ambulatory Surgical Centers (ASCs). Data contained in this file are extracted from the Internet Quality Improvement and Evaluation System (iQIES) environment and will be updated quarterly along with the other two POS files. The Provider of Services File - Hospital & Non-Hospital Facilities data provide critical resources for other federal regulator requirements as well as supports the ongoing quality & research efforts sponsored by CMS. In this file you will find provider certification, termination, accreditation, ownership, name, location and other characteristics organized by CMS Certification Number.
Facebook
TwitterThis dataset is pre-filtered based on the most frequent searches of Open Payments data.
Facebook
TwitterThe data used in this project cannot be shared publicly. The data were purchased from the Centers for Medicaid and Medicare Services (CMS) with specific Data Use Agreement (DUA) requirements in terms of safeguarding the confidentiality of CMS data. Researchers may download the data directly from the CMS website after completing individual requests. Information regarding data requests and download are available at: https://www.cms.gov/Research-Statistics-Data-and-Systems/Computer-Data-and-Systems/MedicaidDataSourcesGenInfo/MAXGeneralInformation
Facebook
TwitterThe Medicare Secondary Payer project is an annual process which attempts to identify working Medicare beneficiaries and/or their spouses. The first stage of this process is to extract all of the Medicare beneficiaries from the MBR. Prior to 2015, CSPOTRUN performed this function. Beginning in 2015, CSRETAP accomplishes this. In this process two files are prepared. One file goes to the Internal Revenue Service (IRS) for a tax return search and the other file is used for the Master Earnings File (MEF) search. IRS searches their tax return database and identifies returns that have spouses identified and returns this information to SSA. This file is then run against the MEF to obtain any current employment information for the beneficiary or the spouse. This data is sent to CMS for their process to determine whether Medicare should be the secondary payer for hospital and doctors bills. They determine whether the beneficiary and/or spouse have current health insurance coverage from their employer.
Facebook
TwitterThese data consist of high-resolution maps of aboveground biomass at four forested sites in the US: Garcia River Tract in California, Anne Arundel and Howard Counties in Maryland, Parker Tract in North Carolina, and Hubbard Brook Experimental Forest in New Hampshire. Biomass maps were generated using a combination of field data (forest inventory and Lidar) and modeling approaches. Estimates of uncertainty are also provided for the Maryland site using two different modeling methodologies.These data provide estimates of aboveground biomass for the nominal year of 2011 at 20-50 meter resolution in units of megagrams of carbon per hectare (or acre for the Garcia Tract site).The data are presented as a series of 11 GeoTIFF (*.tif) files.
Facebook
TwitterFind details of Cms Cepcor Buyer/importer data in US (United States) with product description, price, shipment date, quantity, imported products list, major us ports name, overseas suppliers/exporters name etc. at sear.co.in.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Health Insurance Marketplace Public Use Files contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace.
To help get you started, here are some data exploration ideas:
See this forum thread for more ideas, and post there if you want to add your own ideas or answer some of the open questions!
This data was originally prepared and released by the Centers for Medicare & Medicaid Services (CMS). Please read the CMS Disclaimer-User Agreement before using this data.
Here, we've processed the data to facilitate analytics. This processed version has three components:
The original versions of the 2014, 2015, 2016 data are available in the "raw" directory of the download and "../input/raw" on Kaggle Scripts. Search for "dictionaries" on this page to find the data dictionaries describing the individual raw files.
In the top level directory of the download ("../input" on Kaggle Scripts), there are six CSV files that contain the combined at across all years:
Additionally, there are two CSV files that facilitate joining data across years:
The "database.sqlite" file contains tables corresponding to each of the processed CSV files.
The code to create the processed version of this data is available on GitHub.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the complete analysis code, processed data, and supplementary materials for the search for resonant structures in CMS Open Data. The analysis reveals potential evidence for resonances at 15.625 GeV and its harmonics, including a precise 8:1 ratio with the Higgs boson mass at 125 GeV.
Contents include:
- Python and ROOT analysis scripts for event selection and background estimation
- Processed mass spectrum data and significance calculations
- Statistical analysis tools and systematic uncertainty studies
- Supplementary plots and tables
- Complete documentation for reproducing the results
The analysis uses publicly available CMS Open Data from Run2016H at √s = 13 TeV, analyzing 286,818 collision events.
Facebook
TwitterThis data set provides global, gridded, model-derived net ecosystem exchange (NEE) of CO2 flux between the land and atmosphere at 3-hourly time steps over seven years (2004-2010) at three different spatial resolutions: 0.5 x 0.5 degree, 2.0 x 2.5 degrees, and 4.0 x 5.0 degrees (latitude/longitude). The 3-hourly data were derived from monthly NEE outputs of 15 global land surface models and four ensemble products in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP).
Facebook
TwitterA statistical combination of searches for heavy resonances decaying to pairs of bosons or leptons is presented. The data correspond to an integrated luminosity of 35.9\fbinv collected during 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13\TeV. The data are found to be consistent with expectations from the standard model background. Exclusion limits are set in the context of models of spin-1 heavy vector triplets and of spin-2 bulk gravitons. For mass-degenerate W' and Z' resonances that predominantly couple to the standard model gauge bosons, the mass exclusion at $95\%$ confidence level of heavy vector bosons is extended to 4.5\TeV as compared to 3.8\TeV determined from the best individual channel. This excluded mass increases to 5.0\TeV if the resonances couple predominantly to fermions.
Facebook
TwitterDescription: This consists of the implementation, in the MadAnalysis 5 framework, of a CMS search with 35.9/fb of LHC proton-proton collisions at 13 TeV targeting vector-like quarks with charge 5/3. This implementation is limited to the same-sign dilepton signal regions of the CMS analysis.
Information on how to use this code and a detailed validation summary are available on the Public Analysis Database of MadAnalysis. The CMS analysis is documented on the collaboration wiki.
Facebook
TwitterThis data set provides high-resolution (1-m) tree canopy cover for states in the Northeast USA. State-level canopy cover data are currently available for Pennsylvania (data for nominal year 2008), Delaware (2014), and Maryland (2013). The data were derived with a rules-based expert system which facilitated integration of leaf-on LiDAR and imagery data into a single classification workflow, exploiting the spectral, height, and spatial information contained in the datasets. Additional states will be added as data processing is completed.
Facebook
TwitterDescription: This consists of the implementation, in the MadAnalysis 5 framework, of a CMS search in 137/fb of LHC proton-proton collisions at 13 TeV for new phenomena featuring a large amount of missing transverse energy and high-energetic jets. This implementation focuses on the mono-jet signal regions of the CMS analysis.
Information on how to use this code and a detailed validation summary are available on the Public Analysis Database of MadAnalysis. The CMS analysis is documented on the collaboration wiki.
Facebook
Twitterhttps://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/
Investigate historical ownership changes and registration details by initiating a reverse Whois lookup for the name Cms.
Facebook
TwitterCERN-LHC. Search for narrow resonacnes in the dijet spectrum from proton-proton collisions at a centre-of-mass energy of 7 TeV. The data sample has an integrated luminosity of 2.9 pb-1. Upper limits (95 PCT CL) are presented of the product of the cross section, the branching ratio into dijets and the accpetance. The data are shown separately for dijet resonances of the types quark-quark, quark-gluon and gluon-gluon.
Facebook
TwitterThis dataset provides carbon monoxide and carbon dioxide flux from fires constrained by satellite observations.The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing, quantifying, understanding, and predicting the evolution of global carbon sources and sinks through improved monitoring of carbon stocks and fluxes. The System will use the full range of NASA satellite observations and modeling/analysis capabilities to establish the accuracy, quantitative uncertainties, and utility of products for supporting national and international policy, regulatory, and management activities. CMS will maintain a global emphasis while providing finer scale regional information, utilizing space-based and surface-based data and will rapidly initiate generation and distribution of products both for user evaluation and to inform near-term policy development and planning.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The CMS National Plan and Provider Enumeration System (NPPES) was developed as part of the Administrative Simplification provisions in the original HIPAA act. The primary purpose of NPPES was to develop a unique identifier for each physician that billed medicare and medicaid. This identifier is now known as the National Provider Identifier Standard (NPI) which is a required 10 digit number that is unique to an individual provider at the national level.
Once an NPI record is assigned to a healthcare provider, parts of the NPI record that have public relevance, including the provider’s name, speciality, and practice address are published in a searchable website as well as downloadable file of zipped data containing all of the FOIA disclosable health care provider data in NPPES and a separate PDF file of code values which documents and lists the descriptions for all of the codes found in the data file.
The dataset contains the latest NPI downloadable file in an easy to query BigQuery table, npi_raw. In addition, there is a second table, npi_optimized which harnesses the power of Big Query’s next-generation columnar storage format to provide an analytical view of the NPI data containing description fields for the codes based on the mappings in Data Dissemination Public File - Code Values documentation as well as external lookups to the healthcare provider taxonomy codes . While this generates hundreds of columns, BigQuery makes it possible to process all this data effectively and have a convenient single lookup table for all provider information.
Fork this kernel to get started.
https://console.cloud.google.com/marketplace/details/hhs/nppes?filter=category:science-research
Dataset Source: Center for Medicare and Medicaid Services. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @rawpixel from Unplash.
What are the top ten most common types of physicians in Mountain View?
What are the names and phone numbers of dentists in California who studied public health?