This dataset provides basic California Natural Diversity Database (CNDDB) information at the USGS 7.5 minute topographic quad level.
This dataset provides basic California Natural Diversity Database (CNDDB) information at the California county level.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The California Natural Diversity Database (CNDDB) is an inventory of the location and natural history information on special status plants, animals, and natural communities in California. CNDDB staff work with partners to maintain current lists of these species, as well as to maintain an ever-growing database of GIS-mapped locations for these species. Species occurrence records in the CNDDB come from a variety of sources with differing accuracies. For the Greenprint, we filtered the records in order to report only recent records with a high degree of confidence in spatial accuracy. The California Natural Diversity Database (CNDDB) is a product of the California Department of Fish and Wildlife's Biogeographic Data Branch (BDB). The CNDDB is both a manual and computerized library of the status and locations of California's rare species and natural community types. The CNDDB includes in its data all federally and state listed plants and animals, all species that are candidates for listing, all species of special concern, and those species that are considered "sensitive" by government agencies and the conservation community. The computerized information is available for a fee in hardcopy and digital forms. The CNDDB is a dynamic system with information continually being added and upgraded. The CNDDB contains over 96,000 locational records for over 2,500 elements (plant taxa, animal taxa, and natural communities). A location record is referred to as an Element Occurrence (EO), and is a site that contains an individual, population, nest site, den, or stand of a special status element. Populations, individuals, or colonies located within 1/4 mile of each other generally constitute a single occurrence, sometimes with multiple parts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides basic California Natural Diversity Database (CNDDB) information at the California county level.
This database receives data from many sources including but not limited to US Fish and Wildlife Service and California Department of Fish and Game. It provides lists and information regarding rare and threatened animals, plants, and ecological communities. It uses scientific classification to identify plants and animals. It also ranks species according to how rare or endangered they are both regionally and worldwide. Lists and reports are available in website, in pdf format. Other CNDDB data is contain in CNDDB data link which is password protected.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides basic California Natural Diversity Database (CNDDB) information at the USGS 7.5 minute topographic quad level.
description: A compiled density of threatened and endangered species built around 2000m wide hexagonal cells. The dataset was created by generating a blank hex grid, intersecting it with the May 2005 CNDDB dataset, and then counting the number if unique species from the CNDDB within each Hex cell.; abstract: A compiled density of threatened and endangered species built around 2000m wide hexagonal cells. The dataset was created by generating a blank hex grid, intersecting it with the May 2005 CNDDB dataset, and then counting the number if unique species from the CNDDB within each Hex cell.
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
CDFW BIOS GIS Dataset, Contact: CNDDB California Natural Diversity Database, Description: To provide the user with a list of all CNDDB-tracked elements (taxa or natural communities) that have been documented by the CNDDB to occur on a particular USGS 7.5 minute topographic quad.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
This polygon shapefile depicts natural communities (NCs) in Monterey County, California. Natural communities have been considered part of the Natural Heritage conservation triad, along with plants and animals of conservation significance, since the state inception of the Natural Heritage program in 1979. Since 1999, the California Department of Fish and Game’s Vegetation Classification and Mapping Program (VegCAMP) has undertaken the classification and mapping of vegetation throughout the state and also has assumed the role of standardizing vegetation nomenclature for California to comply with the National Vegetation Classification System (NVCS). Many vegetation types included in the current list match well with the existing CNDDB NC elements, which were based on Holland (1986). Examples include Valley Wildrye Grassland, Buck Brush Chaparral, Elephant Tree Woodland, Central California Sycamore Alluvial Woodland, and Mendocino Pygmy Cypress Forest. However, others such as Northern Claypan Vernal Pool, Southern Maritime Chaparral, and Serpentine Bunchgrass Grassland are not easily translated. The problem exists because there is a complex relationship between CNDDB NC elements and today’s view of vegetation classification — in some cases, there is a one-to-one relationship, but in most there is a many-to-one or many-to-many relationship. Furthermore, in most cases no recent surveys have been made of old CNDDB NC occurrences to ascertain the proper identity based on today’s classification standards. We think it imprudent to remove these elements from the CNDDB before assessing them and reclassifying them in terms of the currently accepted state and national standards for vegetation classification. This layer is part of a collection of GIS data for Monterey County in California.
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman & Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://res1nrmd-o-tdfgd-o-tcad-o-tgov.vcapture.xyz/FileHandler.ashx?DocumentID=85358].
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
This dataset provides basic California Natural Diversity Database (CNDDB) information at the USGS 7.5 minute topographic quad level.