89 datasets found
  1. R

    Microsoft Coco Dataset

    • universe.roboflow.com
    zip
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2025). Microsoft Coco Dataset [Dataset]. https://universe.roboflow.com/microsoft/coco/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Microsoft
    Variables measured
    Object Bounding Boxes
    Description

    Microsoft Common Objects in Context (COCO) Dataset

    The Common Objects in Context (COCO) dataset is a widely recognized collection designed to spur object detection, segmentation, and captioning research. Created by Microsoft, COCO provides annotations, including object categories, keypoints, and more. The model it a valuable asset for machine learning practitioners and researchers. Today, many model architectures are benchmarked against COCO, which has enabled a standard system by which architectures can be compared.

    While COCO is often touted to comprise over 300k images, it's pivotal to understand that this number includes diverse formats like keypoints, among others. Specifically, the labeled dataset for object detection stands at 123,272 images.

    The full object detection labeled dataset is made available here, ensuring researchers have access to the most comprehensive data for their experiments. With that said, COCO has not released their test set annotations, meaning the test data doesn't come with labels. Thus, this data is not included in the dataset.

    The Roboflow team has worked extensively with COCO. Here are a few links that may be helpful as you get started working with this dataset:

  2. T

    coco

    • tensorflow.org
    • huggingface.co
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). coco [Dataset]. https://www.tensorflow.org/datasets/catalog/coco
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    COCO is a large-scale object detection, segmentation, and captioning dataset.

    Note: * Some images from the train and validation sets don't have annotations. * Coco 2014 and 2017 uses the same images, but different train/val/test splits * The test split don't have any annotations (only images). * Coco defines 91 classes but the data only uses 80 classes. * Panotptic annotations defines defines 200 classes but only uses 133.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('coco', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/coco-2014-1.1.0.png" alt="Visualization" width="500px">

  3. coco-db

    • kaggle.com
    zip
    Updated Aug 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OneTwoBuckleMyShoe (2024). coco-db [Dataset]. https://www.kaggle.com/datasets/onetwobucklemyshoe/coco-db
    Explore at:
    zip(1691914574 bytes)Available download formats
    Dataset updated
    Aug 11, 2024
    Authors
    OneTwoBuckleMyShoe
    Description

    Dataset

    This dataset was created by OneTwoBuckleMyShoe

    Contents

  4. h

    coco_captions_quintets

    • huggingface.co
    Updated Aug 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Embedding Training Data (2022). coco_captions_quintets [Dataset]. https://huggingface.co/datasets/embedding-data/coco_captions_quintets
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 11, 2022
    Dataset authored and provided by
    Embedding Training Data
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for "coco_captions"

      Dataset Summary
    

    COCO is a large-scale object detection, segmentation, and captioning dataset. This repo contains five captions per image; useful for sentence similarity tasks. Disclaimer: The team releasing COCO did not upload the dataset to the Hub and did not write a dataset card. These steps were done by the Hugging Face team.

      Supported Tasks
    

    Sentence Transformers training; useful for semantic search and sentence… See the full description on the dataset page: https://huggingface.co/datasets/embedding-data/coco_captions_quintets.

  5. Microsoft COCO 2017 Object Detection Dataset - raw

    • public.roboflow.com
    zip
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2025). Microsoft COCO 2017 Object Detection Dataset - raw [Dataset]. https://public.roboflow.com/object-detection/microsoft-coco-subset/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset authored and provided by
    Microsofthttp://microsoft.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Bounding Boxes of coco-objects
    Description

    This is the full 2017 COCO object detection dataset (train and valid), which is a subset of the most recent 2020 COCO object detection dataset.

    COCO is a large-scale object detection, segmentation, and captioning dataset of many object types easily recognizable by a 4-year-old. The data is initially collected and published by Microsoft. The original source of the data is here and the paper introducing the COCO dataset is here.

  6. coco Panoptic

    • kaggle.com
    Updated Mar 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arthur Soon (2025). coco Panoptic [Dataset]. https://www.kaggle.com/datasets/arthursoon/coco-panoptic
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Arthur Soon
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Dataset

    This dataset was created by Arthur Soon

    Released under Database: Open Database, Contents: Database Contents

    Contents

  7. R

    Tambahan Data Coco Dataset

    • universe.roboflow.com
    zip
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tambahan data coco (2024). Tambahan Data Coco Dataset [Dataset]. https://universe.roboflow.com/tambahan-data-coco/tambahan-data-coco
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 13, 2024
    Dataset authored and provided by
    Tambahan data coco
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Motor Mobil Bounding Boxes
    Description

    Tambahan Data Coco

    ## Overview
    
    Tambahan Data Coco is a dataset for object detection tasks - it contains Motor Mobil annotations for 6,906 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  8. h

    coco-semantic-segmentation

    • huggingface.co
    Updated May 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enterprise Explorers (2024). coco-semantic-segmentation [Dataset]. https://huggingface.co/datasets/enterprise-explorers/coco-semantic-segmentation
    Explore at:
    Dataset updated
    May 9, 2024
    Dataset authored and provided by
    Enterprise Explorers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COCO semantic segmentation maps

    This dataset contains semantic segmentation maps (monochrome images where each pixel corresponds to one of the 133 COCO categories used for panoptic segmentation). It was generated from the 2017 validation annotations using the following process:

    git clone https://github.com/cocodataset/panopticapi and install it. python converters/panoptic2semantic_segmentation.py --input_json_file /data/datasets/coco/2017/annotations/panoptic_val2017.json… See the full description on the dataset page: https://huggingface.co/datasets/enterprise-explorers/coco-semantic-segmentation.

  9. D

    COCO-style geographically unbiased image dataset for computer vision...

    • dataverse.ird.fr
    pdf, txt, zip
    Updated Jan 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Theophile Bayet; Theophile Bayet (2023). COCO-style geographically unbiased image dataset for computer vision applications [Dataset]. http://doi.org/10.23708/N2UY4C
    Explore at:
    zip(176316624), zip(218991), pdf(57252), txt(1731), pdf(83345), zip(308454)Available download formats
    Dataset updated
    Jan 13, 2023
    Dataset provided by
    DataSuds
    Authors
    Theophile Bayet; Theophile Bayet
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/N2UY4Chttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/N2UY4C

    Time period covered
    Jan 1, 2022 - Apr 1, 2022
    Description

    There are already a lot of datasets linked to computer vision tasks (Imagenet, MS COCO, Pascal VOC, OpenImages, and numerous others), but they all suffer from important bias. One bias of significance for us is the data origin: most datasets are composed of data coming from developed countries. Facing this situation, and the need of data with local context in developing countries, we try here to adapt common data generation process to inclusive data, meaning data drawn from locations and cultural context that are unseen or poorly represented. We chose to replicate MS COCO's data generation process, as it is well documented and easy to implement. Data was collected from January to April 2022 through Flickr platform. This dataset contains the results of our data collection process, as follows : 23 text files containing comma separated URLs for each of the 23 geographic zones identified in the UN M49 norm. These text files are named according to the names of the geographic zones they cover. Annotations for 400 images per geographic zones. Those annotations are COCO-style, and inform on the presence or absence of 91 categories of objects or concepts on the images. They are shared in a JSON format. Licenses for the 400 annotations per geographic zones, based on the original licenses of the data and specified per image. Those licenses are shared under CSV format. A document explaining the objectives and methodology underlying the data collection, also describing the different components of the dataset.

  10. COCO data

    • kaggle.com
    zip
    Updated Jun 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nesquik (2021). COCO data [Dataset]. https://www.kaggle.com/nesquik/coco-data
    Explore at:
    zip(256833078 bytes)Available download formats
    Dataset updated
    Jun 11, 2021
    Authors
    Nesquik
    Description

    Dataset

    This dataset was created by Nesquik

    Contents

  11. Z

    COCO, LVIS, Open Images V4 classes mapping

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Oct 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuseppe Amato; Paolo Bolettieri; Fabio Carrara; Fabrizio Falchi; Claudio Gennaro; Nicola Messina; Lucia Vadicamo; Claudio Vairo (2022). COCO, LVIS, Open Images V4 classes mapping [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7194299
    Explore at:
    Dataset updated
    Oct 13, 2022
    Dataset provided by
    ISTI-CNR
    Authors
    Giuseppe Amato; Paolo Bolettieri; Fabio Carrara; Fabrizio Falchi; Claudio Gennaro; Nicola Messina; Lucia Vadicamo; Claudio Vairo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains a mapping between the classes of COCO, LVIS, and Open Images V4 datasets into a unique set of 1460 classes.

    COCO [Lin et al 2014] contains 80 classes, LVIS [gupta2019lvis] contains 1460 classes, Open Images V4 [Kuznetsova et al. 2020] contains 601 classes.

    We built a mapping of these classes using a semi-automatic procedure in order to have a unique final list of 1460 classes. We also generated a hierarchy for each class, using wordnet

    This repository contains the following files:

    coco_classes_map.txt, contains the mapping for the 80 coco classes

    lvis_classes_map.txt, contains the mapping for the 1460 coco classes

    openimages_classes_map.txt, contains the mapping for the 601 coco classes

    classname_hyperset_definition.csv, contains the final set of 1460 classes, their definition and hierarchy

    all-classnames.xlsx, contains a side-by-side view of all classes considered

    This mapping was used in VISIONE [Amato et al. 2021, Amato et al. 2022] that is a content-based retrieval system that supports various search functionalities (text search, object/color-based search, semantic and visual similarity search, temporal search). For the object detection VISIONE uses three pre-trained models: VfNet Zhang et al. 2021, Mask R-CNN He et al. 2017, and a Faster R-CNN+Inception ResNet (trained on the Open Images V4).

    This is repository is released under a Creative Commons Attribution license, please cite the following paper if you use it in your work in any form:

    @inproceedings{amato2021visione, title={The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval}, author={Amato, Giuseppe and Bolettieri, Paolo and Carrara, Fabio and Debole, Franca and Falchi, Fabrizio and Gennaro, Claudio and Vadicamo, Lucia and Vairo, Claudio}, journal={Journal of Imaging}, volume={7}, number={5}, pages={76}, year={2021}, publisher={Multidisciplinary Digital Publishing Institute} }

    References:

    [Amato et al. 2022] Amato, G. et al. (2022). VISIONE at Video Browser Showdown 2022. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_52

    [Amato et al. 2021] Amato, G., Bolettieri, P., Carrara, F., Debole, F., Falchi, F., Gennaro, C., Vadicamo, L. and Vairo, C., 2021. The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval. Journal of Imaging, 7(5), p.76.

    [Gupta et al.2019] Gupta, A., Dollar, P. and Girshick, R., 2019. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5356-5364).

    [He et al. 2017] He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

    [Kuznetsova et al. 2020] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A. and Duerig, T., 2020. The open images dataset v4. International Journal of Computer Vision, 128(7), pp.1956-1981.

    [Lin et al. 2014] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014, September. Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.

    [Zhang et al. 2021] Zhang, H., Wang, Y., Dayoub, F. and Sunderhauf, N., 2021. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8514-8523).

  12. R

    Slice Coco Test Data Dataset

    • universe.roboflow.com
    zip
    Updated Aug 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    myproject (2022). Slice Coco Test Data Dataset [Dataset]. https://universe.roboflow.com/myproject-nvtwd/slice-coco-test-data
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 29, 2022
    Dataset authored and provided by
    myproject
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Objects In Aerial Images Bounding Boxes
    Description

    Slice Coco Test Data

    ## Overview
    
    Slice Coco Test Data is a dataset for object detection tasks - it contains Objects In Aerial Images annotations for 2,484 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  13. h

    COCO-data

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vansh Agrawal, COCO-data [Dataset]. https://huggingface.co/datasets/Slicky325/COCO-data
    Explore at:
    Authors
    Vansh Agrawal
    Description

    Slicky325/COCO-data dataset hosted on Hugging Face and contributed by the HF Datasets community

  14. coco data

    • kaggle.com
    zip
    Updated Nov 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Van Tai Giap (2024). coco data [Dataset]. https://www.kaggle.com/datasets/vantaigiap/coco-data/code
    Explore at:
    zip(6348627431 bytes)Available download formats
    Dataset updated
    Nov 23, 2024
    Authors
    Van Tai Giap
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Van Tai Giap

    Released under Apache 2.0

    Contents

  15. c

    COCO Price Prediction Data

    • coinbase.com
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COCO Price Prediction Data [Dataset]. https://www.coinbase.com/price-prediction/base-coco-447b
    Explore at:
    Dataset updated
    Dec 2, 2025
    Variables measured
    Growth Rate, Predicted Price
    Measurement technique
    User-defined projections based on compound growth. This is not a formal financial forecast.
    Description

    This dataset contains the predicted prices of the asset COCO over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.

  16. coco formatted infant pose estimates for: Computer vision to automatically...

    • figshare.com
    txt
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melanie Segado; Claire Chambers; Nidhi Seethapathi; Rachit Saluja; Michelle J. Johnson; Konrad Paul Kording (2024). coco formatted infant pose estimates for: Computer vision to automatically assess infant neuromotor risk [Dataset]. http://doi.org/10.6084/m9.figshare.25316500.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 6, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Melanie Segado; Claire Chambers; Nidhi Seethapathi; Rachit Saluja; Michelle J. Johnson; Konrad Paul Kording
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COCO formatted 2D skeletal keypoints for YouTube and Clinical datasets from: Computer vision to automatically assess infant neuromotor risk (Chambers et al 2020) extracted with ViTPose-H implemented in MMPose. For original dataset and data see: https://figshare.com/s/10034c230ad9b2b2a6a4Includes:json files with bounding boxes and 2D keypoints/confidencesvideo metadata (fps, original dimensions)Data descriptions:Youtube Dataset: 94 infants, 19 excluded19 annotations removed for meeting one or more of the following exclusion criteria:8 Partially overlapping twins4 NICU and/or hospital settings1 In water1 On a rocker2 Face occluded by caregiver and/or toy3 Low contrast/very poor video qualityClinical Dataset: 19 infants (31 videos total)Additional data available in original figshare

  17. Characteristics of COCO data-set.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asra Khalid; Karsten Lundqvist; Anne Yates; Mustansar Ali Ghzanfar (2023). Characteristics of COCO data-set. [Dataset]. http://doi.org/10.1371/journal.pone.0245485.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Asra Khalid; Karsten Lundqvist; Anne Yates; Mustansar Ali Ghzanfar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of COCO data-set.

  18. c

    COCO ON BASE Price Prediction Data

    • coinbase.com
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COCO ON BASE Price Prediction Data [Dataset]. https://www.coinbase.com/price-prediction/base-coco-on-base
    Explore at:
    Dataset updated
    Oct 24, 2025
    Variables measured
    Growth Rate, Predicted Price
    Measurement technique
    User-defined projections based on compound growth. This is not a formal financial forecast.
    Description

    This dataset contains the predicted prices of the asset COCO ON BASE over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.

  19. E

    SPEECH-COCO

    • live.european-language-grid.eu
    audio wav
    Updated Dec 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). SPEECH-COCO [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7686
    Explore at:
    audio wavAvailable download formats
    Dataset updated
    Dec 10, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction: Our corpus is an extension of the MS COCO image recognition and captioning dataset. MS COCO comprises images paired with a set of five captions. Yet, it does not include any speech. Therefore, we used Voxygen's text-to-speech system to synthesise the available captions. The addition of speech as a new modality enables MSCOCO to be used for researches in the field of language acquisition, unsupervised term discovery, keyword spotting, or semantic embedding using speech and vision. Our corpus is licensed under a Creative Commons Attribution 4.0 License. Data Set: This corpus contains 616,767 spoken captions from MSCOCO's val2014 and train2014 subsets (respectively 414,113 for train2014 and 202,654 for val2014). We used 8 different voices. 4 of them have a British accent (Paul, Bronwen, Judith, and Elizabeth) and the 4 others have an American accent (Phil, Bruce, Amanda, Jenny). In order to make the captions sound more natural, we used SOX tempo command, enabling us to change the speed without changing the pitch. 1/3 of the captions are 10% slower than the original pace, 1/3 are 10% faster. The last third of the captions was kept untouched. We also modified approximately 30% of the original captions and added disfluencies such as "um", "uh", "er" so that the captions would sound more natural. Each WAV file is paired with a JSON file containing various information: timecode of each word in the caption, name of the speaker, name of the WAV file, etc. The JSON files have the following data structure: {"duration": float, "speaker": string, "synthesisedCaption": string, "timecode": list, "speed": float, "wavFilename": string, "captionID": int, "imgID": int, "disfluency": list}. On average, each caption comprises 10.79 tokens, disfluencies included. The WAV files are on average 3.52 seconds long.

  20. s

    Coco Rico Import Data & Buyers List in USA

    • seair.co.in
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim Solutions (2025). Coco Rico Import Data & Buyers List in USA [Dataset]. https://www.seair.co.in/us-import/product-coco-rico.aspx
    Explore at:
    .text/.csv/.xml/.xls/.binAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Seair Exim Solutions
    Area covered
    United States
    Description

    Get the latest USA Coco Rico import data with importer names, shipment details, buyers list, product description, price, quantity, and major US ports.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Microsoft (2025). Microsoft Coco Dataset [Dataset]. https://universe.roboflow.com/microsoft/coco/model/3

Microsoft Coco Dataset

coco

microsoft-coco-dataset

Explore at:
zipAvailable download formats
Dataset updated
Jul 23, 2025
Dataset authored and provided by
Microsoft
Variables measured
Object Bounding Boxes
Description

Microsoft Common Objects in Context (COCO) Dataset

The Common Objects in Context (COCO) dataset is a widely recognized collection designed to spur object detection, segmentation, and captioning research. Created by Microsoft, COCO provides annotations, including object categories, keypoints, and more. The model it a valuable asset for machine learning practitioners and researchers. Today, many model architectures are benchmarked against COCO, which has enabled a standard system by which architectures can be compared.

While COCO is often touted to comprise over 300k images, it's pivotal to understand that this number includes diverse formats like keypoints, among others. Specifically, the labeled dataset for object detection stands at 123,272 images.

The full object detection labeled dataset is made available here, ensuring researchers have access to the most comprehensive data for their experiments. With that said, COCO has not released their test set annotations, meaning the test data doesn't come with labels. Thus, this data is not included in the dataset.

The Roboflow team has worked extensively with COCO. Here are a few links that may be helpful as you get started working with this dataset:

Search
Clear search
Close search
Google apps
Main menu