MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is designed for object detection tasks and follows the COCO format. It contains 300 images and corresponding annotation files in JSON format. The dataset is split into training, validation, and test sets, ensuring a balanced distribution for model evaluation.
train/ (70% - 210 images)
valid/ (15% - 45 images)
test/ (15% - 45 images)
Images in JPEG/PNG format.
A corresponding _annotations.coco.json file that includes bounding box annotations.
The dataset has undergone several preprocessing and augmentation steps to enhance model generalization:
Auto-orientation applied
Resized to 640x640 pixels (stretched)
Flip: Horizontal flipping
Crop: 0% minimum zoom, 5% maximum zoom
Rotation: Between -5° and +5°
Saturation: Adjusted between -4% and +4%
Brightness: Adjusted between -10% and +10%
Blur: Up to 0px
Noise: Up to 0.1% of pixels
Bounding Box Augmentations:
Flipping, cropping, rotation, brightness adjustments, blur, and noise applied accordingly to maintain annotation consistency.
The dataset follows the COCO (Common Objects in Context) format, which includes:
images section: Contains image metadata such as filename, width, and height.
annotations section: Includes bounding boxes, category IDs, and segmentation masks (if applicable).
categories section: Defines class labels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Conversion Of Format And Classes To Coco is a dataset for object detection tasks - it contains Objects annotations for 7,460 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
The Common Objects in Context (COCO) dataset is a widely recognized collection designed to spur object detection, segmentation, and captioning research. Created by Microsoft, COCO provides annotations, including object categories, keypoints, and more. The model it a valuable asset for machine learning practitioners and researchers. Today, many model architectures are benchmarked against COCO, which has enabled a standard system by which architectures can be compared.
While COCO is often touted to comprise over 300k images, it's pivotal to understand that this number includes diverse formats like keypoints, among others. Specifically, the labeled dataset for object detection stands at 123,272 images.
The full object detection labeled dataset is made available here, ensuring researchers have access to the most comprehensive data for their experiments. With that said, COCO has not released their test set annotations, meaning the test data doesn't come with labels. Thus, this data is not included in the dataset.
The Roboflow team has worked extensively with COCO. Here are a few links that may be helpful as you get started working with this dataset:
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Parag Mandal
Released under CC0: Public Domain
detection-datasets/coco dataset hosted on Hugging Face and contributed by the HF Datasets community
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Format Converter 2K Person From COCO is a dataset for object detection tasks - it contains Person annotations for 2,159 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
https://www.kcl.ac.uk/researchsupport/assets/DataAccessAgreement-Description.pdfhttps://www.kcl.ac.uk/researchsupport/assets/DataAccessAgreement-Description.pdf
This dataset contains annotated images for object detection for containers and hands in a first-person view (egocentric view) during drinking activities. Both YOLOV8 format and COCO format are provided.Please refer to our paper for more details.Purpose: Training and testing the object detection model.Content: Videos from Session 1 of Subjects 1-20.Images: Extracted from the videos of Subjects 1-20 Session 1.Additional Images:~500 hand/container images from Roboflow Open Source data.~1500 null (background) images from VOC Dataset and MIT Indoor Scene Recognition Dataset:1000 indoor scenes from 'MIT Indoor Scene Recognition'400 other unrelated objects from VOC DatasetData Augmentation:Horizontal flipping±15% brightness change±10° rotationFormats Provided:COCO formatPyTorch YOLOV8 formatImage Size: 416x416 pixelsTotal Images: 16,834Training: 13,862Validation: 1,975Testing: 997Instance Numbers:Containers: Over 10,000Hands: Over 8,000
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Is Keypoint-Only subset from COCO 2017 Dataset. You can access the original COCO Dataset from here
This Dataset contains three folders: annotations, val2017, and train2017. - Contents in annotation folder is two jsons, for val dan train. Each jsons contains various informations, like the image id, bounding box, and keypoints locations. - Contents of val2017 and train2017 is various images that have been filtered. They are the images that have num_keypoints > 0 according to the annotation file.
coco2017
Image-text pairs from MS COCO2017.
Data origin
Data originates from cocodataset.org While coco-karpathy uses a dense format (with several sentences and sendids per row), coco-karpathy-long uses a long format with one sentence (aka caption) and sendid per row. coco-karpathy-long uses the first five sentences and therefore is five times as long as coco-karpathy. phiyodr/coco2017: One row corresponds one image with several sentences. phiyodr/coco2017-long: One row… See the full description on the dataset page: https://huggingface.co/datasets/phiyodr/coco2017.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
YOLO Coco Data Format is a dataset for object detection tasks - it contains Objects annotations for 692 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This remarkable dataset of lunar images captured by the LRO Camera has been meticulously labeled in COCO format for object detection tasks in computer vision. The COCO annotation format provides a standardized way of describing objects in the images, including their locations and class labels, enabling machine learning algorithms to learn to recognize and detect objects in the images more accurately.
This dataset captures a wide variety of lunar features, including craters, mountains, and other geological formations, all labeled with precise and consistent COCO annotation. The dataset's comprehensive coverage of craters and other geological features on the Moon provides a treasure trove of data and insights into the evolution of our closest celestial neighbor.
The COCO annotation format is particularly well-suited for handling complex scenes with multiple objects, occlusions, and overlapping objects. With the precise labeling of objects provided by COCO annotation, this dataset enables researchers and scientists to train machine learning algorithms to automatically detect and analyze these features in large datasets.
In conclusion, this valuable dataset of lunar images labeled in COCO annotation format provides a powerful tool for research and discovery in the field of planetary science. With its comprehensive coverage and precise labeling of lunar features, it offers a wealth of data and insights into the evolution of the Moon's landscape, facilitating research and understanding of this enigmatic celestial body.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The IMPTOX project has received funding from the EU's H2020 framework programme for research and innovation under grant agreement n. 965173. Imptox is part of the European MNP cluster on human health.
More information about the project here.
Description: This repository includes the trained weights and a custom COCO-formatted dataset used for developing and testing a Faster R-CNN R_50_FPN_3x object detector, specifically designed to identify particles in micro-FTIR filter images.
Contents:
Weights File (neuralNetWeights_V3.pth):
Format: .pth
Description: This file contains the trained weights for a Faster R-CNN model with a ResNet-50 backbone and a Feature Pyramid Network (FPN), trained for 3x schedule. These weights are specifically tuned for detecting particles in micro-FTIR filter images.
Custom COCO Dataset (uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip):
Format: .zip
Description: This zip archive contains a custom COCO-formatted dataset, including JPEG images and their corresponding annotation file. The dataset consists of images of micro-FTIR filters with annotated particles.
Contents:
Images: JPEG format images of micro-FTIR filters.
Annotations: A JSON file in COCO format providing detailed annotations of the particles in the images.
Management: The dataset can be managed and manipulated using the Pycocotools library, facilitating easy integration with existing COCO tools and workflows.
Applications: The provided weights and dataset are intended for researchers and practitioners in the field of microscopy and particle detection. The dataset and model can be used for further training, validation, and fine-tuning of object detection models in similar domains.
Usage Notes:
The neuralNetWeights_V3.pth file should be loaded into a PyTorch model compatible with the Faster R-CNN architecture, such as Detectron2.
The contents of uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip should be extracted and can be used with any COCO-compatible object detection framework for training and evaluation purposes.
Code can be found on the related Github repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Railway Track Coco Format is a dataset for object detection tasks - it contains Sleepers Fasteners Track annotations for 304 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 164K images.
This is the original version from 2014 made available here for easy access in Kaggle and because it does not seem to be still available on the COCO Dataset website. This has been retrieved from the mirror that Joseph Redmon has setup on this own website.
The 2014 version of the COCO dataset is an excellent object detection dataset with 80 classes, 82,783 training images and 40,504 validation images. This dataset contains all this imagery on two folders as well as the annotation with the class and location (bounding box) of the objects contained in each image.
The initial split provides training (83K), validation (41K) and test (41K) sets. Since the split between training and validation was not optimal in the original dataset, there is also two text (.part) files with a new split with only 5,000 images for validation and the rest for training. The test set has no labels and can be used for visual validation or pseudo-labelling.
This is mostly inspired by Erik Linder-Norén and [Joseph Redmon](https://pjreddie.com/darknet/yolo
This is an open source object detection model by TensorFlow in TensorFlow Lite format. While it is not recommended to use this model in production surveys, it can be useful for demonstration purposes and to get started with smart assistants in ArcGIS Survey123. You are responsible for the use of this model. When using Survey123, it is your responsibility to review and manually correct outputs.This object detection model was trained using the Common Objects in Context (COCO) dataset. COCO is a large-scale object detection dataset that is available for use under the Creative Commons Attribution 4.0 License.The dataset contains 80 object categories and 1.5 million object instances that include people, animals, food items, vehicles, and household items. For a complete list of common objects this model can detect, see Classes.The model can be used in ArcGIS Survey123 to detect common objects in photos that are captured with the Survey123 field app. Using the modelFollow the guide to use the model. You can use this model to detect or redact common objects in images captured with the Survey123 field app. The model must be configured for a survey in Survey123 Connect.Fine-tuning the modelThis model cannot be fine-tuned using ArcGIS tools.InputCamera feed (either low-resolution preview or high-resolution capture).OutputImage with common object detections written to its EXIF metadata or an image with detected objects redacted.Model architectureThis is an open source object detection model by TensorFlow in TensorFlow Lite format with MobileNet architecture. The model is available for use under the Apache License 2.0.Sample resultsHere are a few results from the model.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This page contains a modified Cocos dataset along with details about the dataset used.
File Descriptions
imgs.zip - Train: 🚂 This folder contains the training set, which can be split into train/validation data for model training. - Test: 🧪 Your trained models should be used to produce predictions on the test set.
labels.zip - categories.csv: 📝 This file lists all the object classes in the dataset, ordered according to the column ordering in the train labels file. - train_labels.csv: 📊 This file contains data regarding which image contains which categories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Vehicles Coco is a dataset for object detection tasks - it contains Vehicles annotations for 18,998 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
This dataset was created by Nagaraj Madamshetti
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data abstract:
The YogDATA dataset contains images from an industrial laboratory production line when it is functioned to quality yogurts. The case-study for the recognition of yogurt cups requires training of Mask R-CNN and YOLO v5.0 models with a set of corresponding images. Thus, it is important to collect the corresponding images to train and evaluate the class. Specifically, the YogDATA dataset includes the same labeled data for Mask R-CNN (coco format) and YOLO models. For the YOLO architecture, training and validation datsets include sets of images in jpg format and their annotations in txt file format. For the Mask R-CNN architecture, the annotation of the same sets of images are included in json file format (80% of images and annotations of each subset are in training set and 20% of images of each subset are in test set.)
Paper abstract:
The explosion of the digitisation of the traditional industrial processes and procedures is consolidating a positive impact on modern society by offering a critical contribution to its economic development. In particular, the dairy sector consists of various processes, which are very demanding and thorough. It is crucial to leverage modern automation tools and through-engineering solutions to increase their efficiency and continuously meet challenging standards. Towards this end, in this work, an intelligent algorithm based on machine vision and artificial intelligence, which identifies dairy products within production lines, is presented. Furthermore, in order to train and validate the model, the YogDATA dataset was created that includes yogurt cups within a production line. Specifically, we evaluate two deep learning models (Mask R-CNN and YOLO v5.0) to recognise and detect each yogurt cup in a production line, in order to automate the packaging processes of the products. According to our results, the performance precision of the two models is similar, estimating its at 99\%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset consists of five subsets with annotated images in COCO format, designed for object detection and tracking plant growth: 1. Cucumber_Train Dataset (for Faster R-CNN) - Includes training, validation, and test images of cucumbers from different angles. - Annotations: Bounding boxes in COCO format for object detection tasks.
Annotations: Bounding boxes in COCO format.
Pepper Dataset
Contains images of pepper plants for 24 hours at hourly intervals from a fixed angle.
Annotations: Bounding boxes in COCO format.
Cannabis Dataset
Contains images of cannabis plants for 24 hours at hourly intervals from a fixed angle.
Annotations: Bounding boxes in COCO format.
Cucumber Dataset
Contains images of cucumber plants for 24 hours at hourly intervals from a fixed angle.
Annotations: Bounding boxes in COCO format.
This dataset supports training and evaluation of object detection models across diverse crops.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is designed for object detection tasks and follows the COCO format. It contains 300 images and corresponding annotation files in JSON format. The dataset is split into training, validation, and test sets, ensuring a balanced distribution for model evaluation.
train/ (70% - 210 images)
valid/ (15% - 45 images)
test/ (15% - 45 images)
Images in JPEG/PNG format.
A corresponding _annotations.coco.json file that includes bounding box annotations.
The dataset has undergone several preprocessing and augmentation steps to enhance model generalization:
Auto-orientation applied
Resized to 640x640 pixels (stretched)
Flip: Horizontal flipping
Crop: 0% minimum zoom, 5% maximum zoom
Rotation: Between -5° and +5°
Saturation: Adjusted between -4% and +4%
Brightness: Adjusted between -10% and +10%
Blur: Up to 0px
Noise: Up to 0.1% of pixels
Bounding Box Augmentations:
Flipping, cropping, rotation, brightness adjustments, blur, and noise applied accordingly to maintain annotation consistency.
The dataset follows the COCO (Common Objects in Context) format, which includes:
images section: Contains image metadata such as filename, width, and height.
annotations section: Includes bounding boxes, category IDs, and segmentation masks (if applicable).
categories section: Defines class labels.