100+ datasets found
  1. Bee Object Detection Dataset COCO Format

    • kaggle.com
    zip
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Om Lande (2025). Bee Object Detection Dataset COCO Format [Dataset]. https://www.kaggle.com/datasets/omlande/bee-object-detection-dataset-coco-format
    Explore at:
    zip(1713481008 bytes)Available download formats
    Dataset updated
    Mar 18, 2025
    Authors
    Om Lande
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Om Lande

    Released under Apache 2.0

    Contents

  2. h

    Carla-COCO-Object-Detection-Dataset

    • huggingface.co
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YunusSkeete (2023). Carla-COCO-Object-Detection-Dataset [Dataset]. https://huggingface.co/datasets/yunusskeete/Carla-COCO-Object-Detection-Dataset
    Explore at:
    Dataset updated
    Dec 2, 2023
    Authors
    YunusSkeete
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains 1028 images each 640x380 pixels. The dataset is split into 249 test and 779 training examples. Every image comes with MS COCO format annotations. The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame. The labels where then automatically generated using the semantic segmentation information.

  3. R

    Weapon Coco Format Dataset

    • universe.roboflow.com
    zip
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CVAI (2025). Weapon Coco Format Dataset [Dataset]. https://universe.roboflow.com/cvai-vublo/weapon-coco-format
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    CVAI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Weapon Dataset Bounding Boxes
    Description

    Weapon COCO Format

    ## Overview
    
    Weapon COCO Format is a dataset for object detection tasks - it contains Weapon Dataset annotations for 1,501 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  4. Sartorius COCO Format Dataset

    • kaggle.com
    zip
    Updated Oct 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ari (2021). Sartorius COCO Format Dataset [Dataset]. https://www.kaggle.com/datasets/vexxingbanana/sartorius-coco-format-dataset
    Explore at:
    zip(9798602 bytes)Available download formats
    Dataset updated
    Oct 28, 2021
    Authors
    Ari
    Description

    Dataset

    This dataset was created by Ari

    Contents

  5. COCO XML Format

    • kaggle.com
    zip
    Updated Apr 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sovit Ranjan Rath (2022). COCO XML Format [Dataset]. https://www.kaggle.com/datasets/sovitrath/coco-xml-format
    Explore at:
    zip(20088592822 bytes)Available download formats
    Dataset updated
    Apr 2, 2022
    Authors
    Sovit Ranjan Rath
    Description

    Original dataset credit: https://cocodataset.org/#home

  6. T

    coco

    • tensorflow.org
    • huggingface.co
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). coco [Dataset]. https://www.tensorflow.org/datasets/catalog/coco
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    COCO is a large-scale object detection, segmentation, and captioning dataset.

    Note: * Some images from the train and validation sets don't have annotations. * Coco 2014 and 2017 uses the same images, but different train/val/test splits * The test split don't have any annotations (only images). * Coco defines 91 classes but the data only uses 80 classes. * Panotptic annotations defines defines 200 classes but only uses 133.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('coco', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/coco-2014-1.1.0.png" alt="Visualization" width="500px">

  7. h

    coco

    • huggingface.co
    Updated Mar 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Detection datasets (2023). coco [Dataset]. https://huggingface.co/datasets/detection-datasets/coco
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 3, 2023
    Dataset authored and provided by
    Detection datasets
    Description

    detection-datasets/coco dataset hosted on Hugging Face and contributed by the HF Datasets community

  8. R

    Railway Track Coco Format Dataset

    • universe.roboflow.com
    zip
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    railway (2025). Railway Track Coco Format Dataset [Dataset]. https://universe.roboflow.com/railway-xo8nl/railway-track-coco-format/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    railway
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Sleepers Fasteners Track Bounding Boxes
    Description

    Railway Track Coco Format

    ## Overview
    
    Railway Track Coco Format is a dataset for object detection tasks - it contains Sleepers Fasteners Track annotations for 304 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  9. VisDrone 2019 COCO Format

    • kaggle.com
    zip
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Duwi Purnama Sidik (2024). VisDrone 2019 COCO Format [Dataset]. https://www.kaggle.com/datasets/duwipurnamasidik/visdrone-2019-coco-format
    Explore at:
    zip(2255579533 bytes)Available download formats
    Dataset updated
    Jul 15, 2024
    Authors
    Duwi Purnama Sidik
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Duwi Purnama Sidik

    Released under Apache 2.0

    Contents

  10. R

    Conversion Of Format And Classes To Coco Dataset

    • universe.roboflow.com
    zip
    Updated Aug 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North South University (2022). Conversion Of Format And Classes To Coco Dataset [Dataset]. https://universe.roboflow.com/north-south-university-8gvqa/conversion-of-format-and-classes-to-coco/dataset/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 25, 2022
    Dataset authored and provided by
    North South University
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Objects Bounding Boxes
    Description

    Conversion Of Format And Classes To Coco

    ## Overview
    
    Conversion Of Format And Classes To Coco is a dataset for object detection tasks - it contains Objects annotations for 7,460 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  11. R

    Yolo Coco Data Format Dataset

    • universe.roboflow.com
    zip
    Updated Oct 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Abdur Rob (2025). Yolo Coco Data Format Dataset [Dataset]. https://universe.roboflow.com/md-abdur-rob-x4zgr/yolo-coco-data-format/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 24, 2025
    Dataset authored and provided by
    Md Abdur Rob
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Objects Bounding Boxes
    Description

    YOLO Coco Data Format

    ## Overview
    
    YOLO Coco Data Format is a dataset for object detection tasks - it contains Objects annotations for 692 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  12. R

    Microsoft Coco Dataset

    • universe.roboflow.com
    zip
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2025). Microsoft Coco Dataset [Dataset]. https://universe.roboflow.com/microsoft/coco/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Microsoft
    Variables measured
    Object Bounding Boxes
    Description

    Microsoft Common Objects in Context (COCO) Dataset

    The Common Objects in Context (COCO) dataset is a widely recognized collection designed to spur object detection, segmentation, and captioning research. Created by Microsoft, COCO provides annotations, including object categories, keypoints, and more. The model it a valuable asset for machine learning practitioners and researchers. Today, many model architectures are benchmarked against COCO, which has enabled a standard system by which architectures can be compared.

    While COCO is often touted to comprise over 300k images, it's pivotal to understand that this number includes diverse formats like keypoints, among others. Specifically, the labeled dataset for object detection stands at 123,272 images.

    The full object detection labeled dataset is made available here, ensuring researchers have access to the most comprehensive data for their experiments. With that said, COCO has not released their test set annotations, meaning the test data doesn't come with labels. Thus, this data is not included in the dataset.

    The Roboflow team has worked extensively with COCO. Here are a few links that may be helpful as you get started working with this dataset:

  13. I

    dataset_coco

    • app.ikomia.ai
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ikomia (2023). dataset_coco [Dataset]. https://app.ikomia.ai/hub/algorithms/dataset_coco/
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset authored and provided by
    Ikomia
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Load COCO 2017 dataset Load any dataset in COCO format to Ikomia format. Then, any training algorithms from the Ikomia marketplace can be connected to this converter....

  14. R

    Vehicles Coco Dataset

    • universe.roboflow.com
    zip
    Updated Jan 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vehicle MSCOCO (2022). Vehicles Coco Dataset [Dataset]. https://universe.roboflow.com/vehicle-mscoco/vehicles-coco/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 23, 2022
    Dataset authored and provided by
    Vehicle MSCOCO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Vehicles Bounding Boxes
    Description

    Vehicles Coco

    ## Overview
    
    Vehicles Coco is a dataset for object detection tasks - it contains Vehicles annotations for 18,998 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  15. DOTAv1 (COCO Annotations)

    • kaggle.com
    zip
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Riddhick Dalal (2025). DOTAv1 (COCO Annotations) [Dataset]. https://www.kaggle.com/datasets/riddhickdalal/dotav1-coco-annotations
    Explore at:
    zip(13535401184 bytes)Available download formats
    Dataset updated
    Aug 4, 2025
    Authors
    Riddhick Dalal
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    This is the filtered version of DOTA v 1 data set . It contains the annotations for the following classes - "plane", "ship", "storage-tank", "harbor", "bridge", "large-vehicle", "small-vehicle", "helicopter". Also the annotation format is changed into COCO format to support axis based bounding.

    Original dataset: https://captain-whu.github.io/DOTA/ Original authors: Xia et al. (2018) β€” DOTA: A Large-scale Dataset for Object Detection in Aerial Images. License: CC BY-NC-SA 4.0

    @inproceedings{xia2018dota, title={DOTA: A Large-scale Dataset for Object Detection in Aerial Images}, author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei}, booktitle={CVPR}, year={2018}, pages={3974--3983} }

  16. MS-COCO 2017 dataset - YOLO format

    • kaggle.com
    zip
    Updated Nov 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahariar Alif (2025). MS-COCO 2017 dataset - YOLO format [Dataset]. https://www.kaggle.com/datasets/alifshahariar/ms-coco-2017-dataset-yolo-format
    Explore at:
    zip(26509567635 bytes)Available download formats
    Dataset updated
    Nov 1, 2025
    Authors
    Shahariar Alif
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    I wanted to train a custom YOLO object detection model, but the MS-COCO dataset was not in a good format. So I parsed the instances json files in the MS-COCO annotations and processed the dataset to be a YOLO friendly format.

    I downloaded the dataset from COCO webste. You can download any split you need from the COCO dataset website

    Directory info: 1. test: Only contains the test images 2. train: Has two sub folders, images - contains the training images, labels - contains the training labels in a .txt file for each train image 3. val: Has two sub folders, images - contains the validation images, labels - contains the validation labels in a .txt file for each validation image

    I do not own the dataset in any way. I merely parsed the dataset to a be in a ready to train YOLO format. Download the original dataset from the COCO webste

  17. LRO Craters (COCO)

    • zenodo.org
    zip
    Updated Mar 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roberto Del Prete; Roberto Del Prete (2023). LRO Craters (COCO) [Dataset]. http://doi.org/10.5281/zenodo.7774055
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 27, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Roberto Del Prete; Roberto Del Prete
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This remarkable dataset of lunar images captured by the LRO Camera has been meticulously labeled in COCO format for object detection tasks in computer vision. The COCO annotation format provides a standardized way of describing objects in the images, including their locations and class labels, enabling machine learning algorithms to learn to recognize and detect objects in the images more accurately.

    This dataset captures a wide variety of lunar features, including craters, mountains, and other geological formations, all labeled with precise and consistent COCO annotation. The dataset's comprehensive coverage of craters and other geological features on the Moon provides a treasure trove of data and insights into the evolution of our closest celestial neighbor.

    The COCO annotation format is particularly well-suited for handling complex scenes with multiple objects, occlusions, and overlapping objects. With the precise labeling of objects provided by COCO annotation, this dataset enables researchers and scientists to train machine learning algorithms to automatically detect and analyze these features in large datasets.

    In conclusion, this valuable dataset of lunar images labeled in COCO annotation format provides a powerful tool for research and discovery in the field of planetary science. With its comprehensive coverage and precise labeling of lunar features, it offers a wealth of data and insights into the evolution of the Moon's landscape, facilitating research and understanding of this enigmatic celestial body.

  18. h

    crater-boulder-moon-coco-format

    • huggingface.co
    Updated Oct 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darshleen Kaur Virk (2025). crater-boulder-moon-coco-format [Dataset]. https://huggingface.co/datasets/Darshleen01/crater-boulder-moon-coco-format
    Explore at:
    Dataset updated
    Oct 24, 2025
    Authors
    Darshleen Kaur Virk
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Darshleen01/crater-boulder-moon-coco-format dataset hosted on Hugging Face and contributed by the HF Datasets community

  19. Microsoft COCO 2017 Object Detection Dataset - raw

    • public.roboflow.com
    zip
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2025). Microsoft COCO 2017 Object Detection Dataset - raw [Dataset]. https://public.roboflow.com/object-detection/microsoft-coco-subset/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset authored and provided by
    Microsofthttp://microsoft.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Bounding Boxes of coco-objects
    Description

    This is the full 2017 COCO object detection dataset (train and valid), which is a subset of the most recent 2020 COCO object detection dataset.

    COCO is a large-scale object detection, segmentation, and captioning dataset of many object types easily recognizable by a 4-year-old. The data is initially collected and published by Microsoft. The original source of the data is here and the paper introducing the COCO dataset is here.

  20. Z

    COCO dataset and neural network weights for micro-FTIR particle detection on...

    • data.niaid.nih.gov
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schowing, Thibault (2024). COCO dataset and neural network weights for micro-FTIR particle detection on filters. [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10839526
    Explore at:
    Dataset updated
    Aug 13, 2024
    Dataset provided by
    HES-SO Vaud
    Authors
    Schowing, Thibault
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The IMPTOX project has received funding from the EU's H2020 framework programme for research and innovation under grant agreement n. 965173. Imptox is part of the European MNP cluster on human health.

    More information about the project here.

    Description: This repository includes the trained weights and a custom COCO-formatted dataset used for developing and testing a Faster R-CNN R_50_FPN_3x object detector, specifically designed to identify particles in micro-FTIR filter images.

    Contents:

    Weights File (neuralNetWeights_V3.pth):

    Format: .pth

    Description: This file contains the trained weights for a Faster R-CNN model with a ResNet-50 backbone and a Feature Pyramid Network (FPN), trained for 3x schedule. These weights are specifically tuned for detecting particles in micro-FTIR filter images.

    Custom COCO Dataset (uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip):

    Format: .zip

    Description: This zip archive contains a custom COCO-formatted dataset, including JPEG images and their corresponding annotation file. The dataset consists of images of micro-FTIR filters with annotated particles.

    Contents:

    Images: JPEG format images of micro-FTIR filters.

    Annotations: A JSON file in COCO format providing detailed annotations of the particles in the images.

    Management: The dataset can be managed and manipulated using the Pycocotools library, facilitating easy integration with existing COCO tools and workflows.

    Applications: The provided weights and dataset are intended for researchers and practitioners in the field of microscopy and particle detection. The dataset and model can be used for further training, validation, and fine-tuning of object detection models in similar domains.

    Usage Notes:

    The neuralNetWeights_V3.pth file should be loaded into a PyTorch model compatible with the Faster R-CNN architecture, such as Detectron2.

    The contents of uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip should be extracted and can be used with any COCO-compatible object detection framework for training and evaluation purposes.

    Code can be found on the related Github repository.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Om Lande (2025). Bee Object Detection Dataset COCO Format [Dataset]. https://www.kaggle.com/datasets/omlande/bee-object-detection-dataset-coco-format
Organization logo

Bee Object Detection Dataset COCO Format

An Image Dataset for Object Detection on COCO Dataset

Explore at:
zip(1713481008 bytes)Available download formats
Dataset updated
Mar 18, 2025
Authors
Om Lande
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Dataset

This dataset was created by Om Lande

Released under Apache 2.0

Contents

Search
Clear search
Close search
Google apps
Main menu