100+ datasets found
  1. R

    Microsoft Coco Dataset

    • universe.roboflow.com
    zip
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2025). Microsoft Coco Dataset [Dataset]. https://universe.roboflow.com/microsoft/coco/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Microsoft
    Variables measured
    Object Bounding Boxes
    Description

    Microsoft Common Objects in Context (COCO) Dataset

    The Common Objects in Context (COCO) dataset is a widely recognized collection designed to spur object detection, segmentation, and captioning research. Created by Microsoft, COCO provides annotations, including object categories, keypoints, and more. The model it a valuable asset for machine learning practitioners and researchers. Today, many model architectures are benchmarked against COCO, which has enabled a standard system by which architectures can be compared.

    While COCO is often touted to comprise over 300k images, it's pivotal to understand that this number includes diverse formats like keypoints, among others. Specifically, the labeled dataset for object detection stands at 123,272 images.

    The full object detection labeled dataset is made available here, ensuring researchers have access to the most comprehensive data for their experiments. With that said, COCO has not released their test set annotations, meaning the test data doesn't come with labels. Thus, this data is not included in the dataset.

    The Roboflow team has worked extensively with COCO. Here are a few links that may be helpful as you get started working with this dataset:

  2. t

    COCO panoptic validation set - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). COCO panoptic validation set - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/coco-panoptic-validation-set
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    Panoptic segmentation aims to unify instance and semantic segmentation in the same framework. Existing works propose to merge instance and semantic segmentation using post-processing layers. Recent works unify both segmentation tasks by producing binary masks and class scores for both things and stuff classes.

  3. COCO 2017

    • kaggle.com
    zip
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikdintel (2024). COCO 2017 [Dataset]. https://www.kaggle.com/datasets/snikhilrao/coco-2017
    Explore at:
    zip(26884588931 bytes)Available download formats
    Dataset updated
    Nov 14, 2024
    Authors
    Nikdintel
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    📌 What's Included:

    • Training Set: 118K images with annotations for detection, segmentation, and keypoints.
    • Validation Set: 5K images with full annotations for validation.
    • Testing Set: Images are divided into two splits—dev and challenge—replacing the four splits (dev, standard, reserve, challenge) used in previous years.
    • Stuff Annotations: Available for 40K images in the training set and 5K validation images, enabling semantic segmentation research.
    • Unlabeled Data: A set of 120K images with no annotations, mirroring the class distribution of the labeled data. This is ideal for exploring semi-supervised learning techniques.

    🔍 Key Changes in COCO 2017:

    • The train/val split was updated based on community feedback, now featuring 118K/5K images instead of the previous 83K/41K split.
    • While the annotations for detection and keypoints are consistent with previous years, additional stuff annotations were introduced in 2017.
    • Unlabeled data is now available for semi-supervised learning tasks, opening new avenues for experimentation.

    📂 Dataset Structure:

    • train2017: Images and annotations
    • val2017: Images and annotations
    • test2017: Images (no annotations provided)
    • unlabeled2017: Unlabeled images

    This dataset can be used for a variety of computer vision tasks, including object detection, instance segmentation, keypoint detection, semantic segmentation, and image captioning. Whether you're working on supervised or semi-supervised learning, this resource is designed to meet your needs.

  4. COCO SET

    • kaggle.com
    zip
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sidra Faruqi (2024). COCO SET [Dataset]. https://www.kaggle.com/sidrafaruqi/coco-set
    Explore at:
    zip(542 bytes)Available download formats
    Dataset updated
    Sep 11, 2024
    Authors
    Sidra Faruqi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Sidra Faruqi

    Released under Apache 2.0

    Contents

  5. T

    coco

    • tensorflow.org
    • huggingface.co
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). coco [Dataset]. https://www.tensorflow.org/datasets/catalog/coco
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    COCO is a large-scale object detection, segmentation, and captioning dataset.

    Note: * Some images from the train and validation sets don't have annotations. * Coco 2014 and 2017 uses the same images, but different train/val/test splits * The test split don't have any annotations (only images). * Coco defines 91 classes but the data only uses 80 classes. * Panotptic annotations defines defines 200 classes but only uses 133.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('coco', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/coco-2014-1.1.0.png" alt="Visualization" width="500px">

  6. Coco 128 Dataset

    • universe.roboflow.com
    zip
    Updated Sep 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Team Roboflow (2021). Coco 128 Dataset [Dataset]. https://universe.roboflow.com/team-roboflow/coco-128/dataset/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 28, 2021
    Dataset provided by
    Roboflowhttps://roboflow.com/
    Authors
    Team Roboflow
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Common Objects Bounding Boxes
    Description

    COCO 128 is a subset of 128 images of the larger COCO dataset. It reuses the training set for both validation and testing, with the purpose of proving that your training pipeline is working properly and can overfit this small dataset.

    COCO 128 is a great dataset to use the first time you are testing out a new model.

  7. COCO Minitrain 10K

    • kaggle.com
    zip
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Banuprasad B (2025). COCO Minitrain 10K [Dataset]. https://www.kaggle.com/datasets/banuprasadb/coco-minitrain-10k
    Explore at:
    zip(2435986715 bytes)Available download formats
    Dataset updated
    Jul 4, 2025
    Authors
    Banuprasad B
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    COCO minitrain is a subset of the COCO train2017 dataset, and contains 10K images (about 8.45% of the train2017 set) and 80 object categories. It is useful for hyperparameter tuning and reducing the cost of ablation experiments, minitrain's object instance statistics match those of train2017 and val2017

  8. t

    COCO 2017 validation set - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). COCO 2017 validation set - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/coco-2017-validation-set
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The COCO 2017 validation set is used for evaluating the proposed TSP-FCOS and TSP-RCNN models.

  9. Z

    COCO, LVIS, Open Images V4 classes mapping

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Oct 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuseppe Amato; Paolo Bolettieri; Fabio Carrara; Fabrizio Falchi; Claudio Gennaro; Nicola Messina; Lucia Vadicamo; Claudio Vairo (2022). COCO, LVIS, Open Images V4 classes mapping [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7194299
    Explore at:
    Dataset updated
    Oct 13, 2022
    Dataset provided by
    ISTI-CNR
    Authors
    Giuseppe Amato; Paolo Bolettieri; Fabio Carrara; Fabrizio Falchi; Claudio Gennaro; Nicola Messina; Lucia Vadicamo; Claudio Vairo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains a mapping between the classes of COCO, LVIS, and Open Images V4 datasets into a unique set of 1460 classes.

    COCO [Lin et al 2014] contains 80 classes, LVIS [gupta2019lvis] contains 1460 classes, Open Images V4 [Kuznetsova et al. 2020] contains 601 classes.

    We built a mapping of these classes using a semi-automatic procedure in order to have a unique final list of 1460 classes. We also generated a hierarchy for each class, using wordnet

    This repository contains the following files:

    coco_classes_map.txt, contains the mapping for the 80 coco classes

    lvis_classes_map.txt, contains the mapping for the 1460 coco classes

    openimages_classes_map.txt, contains the mapping for the 601 coco classes

    classname_hyperset_definition.csv, contains the final set of 1460 classes, their definition and hierarchy

    all-classnames.xlsx, contains a side-by-side view of all classes considered

    This mapping was used in VISIONE [Amato et al. 2021, Amato et al. 2022] that is a content-based retrieval system that supports various search functionalities (text search, object/color-based search, semantic and visual similarity search, temporal search). For the object detection VISIONE uses three pre-trained models: VfNet Zhang et al. 2021, Mask R-CNN He et al. 2017, and a Faster R-CNN+Inception ResNet (trained on the Open Images V4).

    This is repository is released under a Creative Commons Attribution license, please cite the following paper if you use it in your work in any form:

    @inproceedings{amato2021visione, title={The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval}, author={Amato, Giuseppe and Bolettieri, Paolo and Carrara, Fabio and Debole, Franca and Falchi, Fabrizio and Gennaro, Claudio and Vadicamo, Lucia and Vairo, Claudio}, journal={Journal of Imaging}, volume={7}, number={5}, pages={76}, year={2021}, publisher={Multidisciplinary Digital Publishing Institute} }

    References:

    [Amato et al. 2022] Amato, G. et al. (2022). VISIONE at Video Browser Showdown 2022. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_52

    [Amato et al. 2021] Amato, G., Bolettieri, P., Carrara, F., Debole, F., Falchi, F., Gennaro, C., Vadicamo, L. and Vairo, C., 2021. The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval. Journal of Imaging, 7(5), p.76.

    [Gupta et al.2019] Gupta, A., Dollar, P. and Girshick, R., 2019. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5356-5364).

    [He et al. 2017] He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

    [Kuznetsova et al. 2020] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A. and Duerig, T., 2020. The open images dataset v4. International Journal of Computer Vision, 128(7), pp.1956-1981.

    [Lin et al. 2014] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014, September. Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.

    [Zhang et al. 2021] Zhang, H., Wang, Y., Dayoub, F. and Sunderhauf, N., 2021. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8514-8523).

  10. h

    coco2017

    • huggingface.co
    • opendatalab.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Padilla, coco2017 [Dataset]. https://huggingface.co/datasets/rafaelpadilla/coco2017
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Padilla
    Description

    This dataset contains all COCO 2017 images and annotations split in training (118287 images) and validation (5000 images).

  11. coco dataset

    • kaggle.com
    zip
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ProgramerSalar (2025). coco dataset [Dataset]. https://www.kaggle.com/datasets/salargamer/coco-dataset
    Explore at:
    zip(20043918455 bytes)Available download formats
    Dataset updated
    Jul 5, 2025
    Authors
    ProgramerSalar
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The COCO dataset is a foundational large-scale benchmark for object detection, segmentation, captioning, and keypoint analysis. Created by Microsoft, it features complex everyday scenes with common objects in their natural contexts. With over 330,000 images and 2.5 million labeled instances, it has become the gold standard for training and evaluating computer vision models.

    File Information

    images/
    Contains 2 subdirectories split by usage:
    train2017/: Main training set (118K images)
    val2017/: Validation set (5K images)
    File Naming: 000000000009.jpg (12-digit zero-padded IDs)
    Formats: JPEG images with varying resolutions (average 640×480)
    
    annotations/
    Contains task-specific JSON files with consistent naming:
    captions_*.json: 5 human-generated descriptions per image
    
  12. E

    SPEECH-COCO

    • live.european-language-grid.eu
    audio wav
    Updated Dec 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). SPEECH-COCO [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7686
    Explore at:
    audio wavAvailable download formats
    Dataset updated
    Dec 10, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction: Our corpus is an extension of the MS COCO image recognition and captioning dataset. MS COCO comprises images paired with a set of five captions. Yet, it does not include any speech. Therefore, we used Voxygen's text-to-speech system to synthesise the available captions. The addition of speech as a new modality enables MSCOCO to be used for researches in the field of language acquisition, unsupervised term discovery, keyword spotting, or semantic embedding using speech and vision. Our corpus is licensed under a Creative Commons Attribution 4.0 License. Data Set: This corpus contains 616,767 spoken captions from MSCOCO's val2014 and train2014 subsets (respectively 414,113 for train2014 and 202,654 for val2014). We used 8 different voices. 4 of them have a British accent (Paul, Bronwen, Judith, and Elizabeth) and the 4 others have an American accent (Phil, Bruce, Amanda, Jenny). In order to make the captions sound more natural, we used SOX tempo command, enabling us to change the speed without changing the pitch. 1/3 of the captions are 10% slower than the original pace, 1/3 are 10% faster. The last third of the captions was kept untouched. We also modified approximately 30% of the original captions and added disfluencies such as "um", "uh", "er" so that the captions would sound more natural. Each WAV file is paired with a JSON file containing various information: timecode of each word in the caption, name of the speaker, name of the WAV file, etc. The JSON files have the following data structure: {"duration": float, "speaker": string, "synthesisedCaption": string, "timecode": list, "speed": float, "wavFilename": string, "captionID": int, "imgID": int, "disfluency": list}. On average, each caption comprises 10.79 tokens, disfluencies included. The WAV files are on average 3.52 seconds long.

  13. t

    COCO Validation Set - Dataset - LDM

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). COCO Validation Set - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/coco-validation-set
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The COCO validation set is a subset of the COCO detection dataset.

  14. h

    COCO-AB

    • huggingface.co
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seong Joon Oh (2022). COCO-AB [Dataset]. https://huggingface.co/datasets/coallaoh/COCO-AB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 12, 2022
    Authors
    Seong Joon Oh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    General Information

    Title: COCO-AB Description: The COCO-AB dataset is an extension of the COCO 2014 training set, enriched with additional annotation byproducts (AB). The data includes 82,765 reannotated images from the original COCO 2014 training set. It has relevance in computer vision, specifically in object detection and location. The aim of the dataset is to provide a richer understanding of the images (without extra costs) by recording additional actions and interactions… See the full description on the dataset page: https://huggingface.co/datasets/coallaoh/COCO-AB.

  15. T

    ref_coco

    • tensorflow.org
    • opendatalab.com
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). ref_coco [Dataset]. https://www.tensorflow.org/datasets/catalog/ref_coco
    Explore at:
    Dataset updated
    May 31, 2024
    Description

    A collection of 3 referring expression datasets based off images in the COCO dataset. A referring expression is a piece of text that describes a unique object in an image. These datasets are collected by asking human raters to disambiguate objects delineated by bounding boxes in the COCO dataset.

    RefCoco and RefCoco+ are from Kazemzadeh et al. 2014. RefCoco+ expressions are strictly appearance based descriptions, which they enforced by preventing raters from using location based descriptions (e.g., "person to the right" is not a valid description for RefCoco+). RefCocoG is from Mao et al. 2016, and has more rich description of objects compared to RefCoco due to differences in the annotation process. In particular, RefCoco was collected in an interactive game-based setting, while RefCocoG was collected in a non-interactive setting. On average, RefCocoG has 8.4 words per expression while RefCoco has 3.5 words.

    Each dataset has different split allocations that are typically all reported in papers. The "testA" and "testB" sets in RefCoco and RefCoco+ contain only people and only non-people respectively. Images are partitioned into the various splits. In the "google" split, objects, not images, are partitioned between the train and non-train splits. This means that the same image can appear in both the train and validation split, but the objects being referred to in the image will be different between the two sets. In contrast, the "unc" and "umd" splits partition images between the train, validation, and test split. In RefCocoG, the "google" split does not have a canonical test set, and the validation set is typically reported in papers as "val*".

    Stats for each dataset and split ("refs" is the number of referring expressions, and "images" is the number of images):

    datasetpartitionsplitrefsimages
    refcocogoogletrain4000019213
    refcocogoogleval50004559
    refcocogoogletest50004527
    refcocounctrain4240416994
    refcocouncval38111500
    refcocounctestA1975750
    refcocounctestB1810750
    refcoco+unctrain4227816992
    refcoco+uncval38051500
    refcoco+unctestA1975750
    refcoco+unctestB1798750
    refcocoggoogletrain4482224698
    refcocoggoogleval50004650
    refcocogumdtrain4222621899
    refcocogumdval25731300
    refcocogumdtest50232600

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('ref_coco', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/ref_coco-refcoco_unc-1.1.0.png" alt="Visualization" width="500px">

  16. COCO Minitrain 25k

    • kaggle.com
    zip
    Updated Oct 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Banuprasad B (2025). COCO Minitrain 25k [Dataset]. https://www.kaggle.com/datasets/banuprasadb/coco-minitrain-25k
    Explore at:
    zip(4892566696 bytes)Available download formats
    Dataset updated
    Oct 13, 2025
    Authors
    Banuprasad B
    License

    http://www.gnu.org/licenses/agpl-3.0.htmlhttp://www.gnu.org/licenses/agpl-3.0.html

    Description

    COCO minitrain is a subset of the COCO train2017 dataset, and contains 25K images (about 20% of the train2017 set) and around 184K annotations across 80 object categories. Randomly sampled these images from the full set while preserving the following three quantities as much as possible:

    • proportion of object instances from each class,
    • overall ratios of small, medium and large objects,
    • per class ratios of small, medium and large objects.
  17. h

    coco

    • huggingface.co
    Updated Mar 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Detection datasets (2023). coco [Dataset]. https://huggingface.co/datasets/detection-datasets/coco
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 3, 2023
    Dataset authored and provided by
    Detection datasets
    Description

    detection-datasets/coco dataset hosted on Hugging Face and contributed by the HF Datasets community

  18. Characteristics of COCO data-set.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asra Khalid; Karsten Lundqvist; Anne Yates; Mustansar Ali Ghzanfar (2023). Characteristics of COCO data-set. [Dataset]. http://doi.org/10.1371/journal.pone.0245485.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Asra Khalid; Karsten Lundqvist; Anne Yates; Mustansar Ali Ghzanfar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of COCO data-set.

  19. COCO minitrain

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Phạm Thành Trung (2022). COCO minitrain [Dataset]. https://www.kaggle.com/datasets/trungit/coco25k
    Explore at:
    zip(4066483999 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    Phạm Thành Trung
    Description

    COCO minitrain is a curated mini training set (25K images ≈ 20% of train2017) for COCO. @inproceedings{HoughNet, author = {Nermin Samet and Samet Hicsonmez and Emre Akbas}, title = {HoughNet: Integrating near and long-range evidence for bottom-up object detection},
    booktitle = {European Conference on Computer Vision (ECCV)}, year = {2020}, }

  20. f

    COCO Panoptic scores on validation and test set for the augmentation study.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chazalon, Joseph; Carlinet, Edwin; Perret, Julien; Chen, Yizi; Ngoc, Minh Ôn Vũ; Mallet, Clément (2024). COCO Panoptic scores on validation and test set for the augmentation study. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001454929
    Explore at:
    Dataset updated
    Feb 15, 2024
    Authors
    Chazalon, Joseph; Carlinet, Edwin; Perret, Julien; Chen, Yizi; Ngoc, Minh Ôn Vũ; Mallet, Clément
    Description

    The following parameters are static, and their respective columns are hidden: model architecture is U-Net (trained from scratch), we use the improved training variant, the loss function is the binary cross entropy, the best DEF is selected using joint optimization, and Meyer Watershed (MWS) is used for CSE.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Microsoft (2025). Microsoft Coco Dataset [Dataset]. https://universe.roboflow.com/microsoft/coco/model/3

Microsoft Coco Dataset

coco

microsoft-coco-dataset

Explore at:
zipAvailable download formats
Dataset updated
Jul 23, 2025
Dataset authored and provided by
Microsoft
Variables measured
Object Bounding Boxes
Description

Microsoft Common Objects in Context (COCO) Dataset

The Common Objects in Context (COCO) dataset is a widely recognized collection designed to spur object detection, segmentation, and captioning research. Created by Microsoft, COCO provides annotations, including object categories, keypoints, and more. The model it a valuable asset for machine learning practitioners and researchers. Today, many model architectures are benchmarked against COCO, which has enabled a standard system by which architectures can be compared.

While COCO is often touted to comprise over 300k images, it's pivotal to understand that this number includes diverse formats like keypoints, among others. Specifically, the labeled dataset for object detection stands at 123,272 images.

The full object detection labeled dataset is made available here, ensuring researchers have access to the most comprehensive data for their experiments. With that said, COCO has not released their test set annotations, meaning the test data doesn't come with labels. Thus, this data is not included in the dataset.

The Roboflow team has worked extensively with COCO. Here are a few links that may be helpful as you get started working with this dataset:

Search
Clear search
Close search
Google apps
Main menu