100+ datasets found
  1. h

    coco2017

    • huggingface.co
    • opendatalab.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Padilla, coco2017 [Dataset]. https://huggingface.co/datasets/rafaelpadilla/coco2017
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Padilla
    Description

    This dataset contains all COCO 2017 images and annotations split in training (118287 images) and validation (5000 images).

  2. h

    coco2017

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aritra Roy Gosthipaty, coco2017 [Dataset]. https://huggingface.co/datasets/ariG23498/coco2017
    Explore at:
    Authors
    Aritra Roy Gosthipaty
    Description

    MS-COCO2017

      Use the dataset
    

    from random import randint from datasets import load_dataset from PIL import Image, ImageDraw, ImageFont

    ds = load_dataset("ariG23498/coco2017", streaming=True, split="validation")

    sample = next(iter(ds))

    def draw_bboxes_on_image( image: Image.Image, objects: dict, category_names: dict = None, box_color: str = "red", text_color: str = "white" ) -> Image.Image: image_copy = image.copy() draw =… See the full description on the dataset page: https://huggingface.co/datasets/ariG23498/coco2017.

  3. COCO2017 Monochrome Greyscale YOLO annotations

    • kaggle.com
    zip
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Y. (2024). COCO2017 Monochrome Greyscale YOLO annotations [Dataset]. https://www.kaggle.com/datasets/alexanderyyy/coco2017-monochrome-greyscale-yolo-annotations
    Explore at:
    zip(16332741878 bytes)Available download formats
    Dataset updated
    Aug 12, 2024
    Authors
    Alexander Y.
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Purpose: experiments with YOLO models in monochrome.

    The original COCO2017 dataset has been processed: - added YOLO annotations for 80 classes; - all images are converted to monochrome (greyscale) with an equalized histogram.

    The number of images: - training: 118,287; - validation: 5,000.

    Links to the original COCO 2017 dataset https://cocodataset.org by Microsoft: url_images = 'http://images.cocodataset.org/zips/' url_annotations = 'http://images.cocodataset.org/annotations/annotations_trainval2017.zip'

  4. Microsoft COCO 2017 Object Detection Dataset - raw

    • public.roboflow.com
    zip
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2025). Microsoft COCO 2017 Object Detection Dataset - raw [Dataset]. https://public.roboflow.com/object-detection/microsoft-coco-subset/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset authored and provided by
    Microsofthttp://microsoft.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Bounding Boxes of coco-objects
    Description

    This is the full 2017 COCO object detection dataset (train and valid), which is a subset of the most recent 2020 COCO object detection dataset.

    COCO is a large-scale object detection, segmentation, and captioning dataset of many object types easily recognizable by a 4-year-old. The data is initially collected and published by Microsoft. The original source of the data is here and the paper introducing the COCO dataset is here.

  5. Micro COCO2017

    • kaggle.com
    zip
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hao Hoang (2025). Micro COCO2017 [Dataset]. https://www.kaggle.com/datasets/haohoangofficial/micro-coco2017
    Explore at:
    zip(4918265726 bytes)Available download formats
    Dataset updated
    Jul 11, 2025
    Authors
    Hao Hoang
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    MicroCOCO2017 is a curated subset of the COCO 2017 dataset, designed for lightweight experimentation with object detection and segmentation models. It includes: - 25,000 images from the train2017 split - 5,000 images from the val2017 split Full COCO-style annotations (bounding boxes, categories, segmentation masks) This dataset is ideal for faster training and prototyping while maintaining the diversity of the original COCO dataset. 📁 Forked from: github.com/giddyyupp/coco-minitrain

  6. MS-COCO 2017 dataset - YOLO format

    • kaggle.com
    zip
    Updated Nov 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahariar Alif (2025). MS-COCO 2017 dataset - YOLO format [Dataset]. https://www.kaggle.com/datasets/alifshahariar/ms-coco-2017-dataset-yolo-format
    Explore at:
    zip(26509567635 bytes)Available download formats
    Dataset updated
    Nov 1, 2025
    Authors
    Shahariar Alif
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    I wanted to train a custom YOLO object detection model, but the MS-COCO dataset was not in a good format. So I parsed the instances json files in the MS-COCO annotations and processed the dataset to be a YOLO friendly format.

    I downloaded the dataset from COCO webste. You can download any split you need from the COCO dataset website

    Directory info: 1. test: Only contains the test images 2. train: Has two sub folders, images - contains the training images, labels - contains the training labels in a .txt file for each train image 3. val: Has two sub folders, images - contains the validation images, labels - contains the validation labels in a .txt file for each validation image

    I do not own the dataset in any way. I merely parsed the dataset to a be in a ready to train YOLO format. Download the original dataset from the COCO webste

  7. h

    coco2017-colorization

    • huggingface.co
    Updated Nov 15, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nick Pai (2013). coco2017-colorization [Dataset]. https://huggingface.co/datasets/nickpai/coco2017-colorization
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 15, 2013
    Authors
    Nick Pai
    Description

    COCO 2017 Dataset for Image Colorization

      Overview
    

    This dataset is derived from the COCO (Common Objects in Context) 2017 dataset, which is a large-scale object detection, segmentation, and captioning dataset. The COCO 2017 dataset has been adapted here specifically for the task of image colorization.

      Format
    

    DatasetDict({ train: Dataset({ features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id'… See the full description on the dataset page: https://huggingface.co/datasets/nickpai/coco2017-colorization.

  8. R

    Coco2017 Dataset

    • universe.roboflow.com
    zip
    Updated Nov 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul-Rauf (2021). Coco2017 Dataset [Dataset]. https://universe.roboflow.com/abdul-rauf/coco2017-koxsf/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 2, 2021
    Dataset authored and provided by
    Abdul-Rauf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Images Bounding Boxes
    Description

    Coco2017

    ## Overview
    
    Coco2017 is a dataset for object detection tasks - it contains Images annotations for 7,557 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  9. R

    Ms Coco 2017 Dataset

    • universe.roboflow.com
    zip
    Updated Jul 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    new-workspace-vfynj (2025). Ms Coco 2017 Dataset [Dataset]. https://universe.roboflow.com/new-workspace-vfynj/ms-coco-2017
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 27, 2025
    Dataset authored and provided by
    new-workspace-vfynj
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Ms Coco 2017 Bounding Boxes
    Description

    Ms Coco 2017

    ## Overview
    
    Ms Coco 2017 is a dataset for object detection tasks - it contains Ms Coco 2017 annotations for 4,611 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  10. coco2017_with_annotations

    • kaggle.com
    zip
    Updated Dec 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yurii Pryimak (2024). coco2017_with_annotations [Dataset]. https://www.kaggle.com/datasets/ypryimak/coco2017-with-annotations
    Explore at:
    zip(20066458239 bytes)Available download formats
    Dataset updated
    Dec 1, 2024
    Authors
    Yurii Pryimak
    Description

    Dataset

    This dataset was created by Yurii Pryimak

    Contents

  11. Coco2017 Person Ver Dataset

    • universe.roboflow.com
    zip
    Updated Dec 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dudrn5704@naver.com (2021). Coco2017 Person Ver Dataset [Dataset]. https://universe.roboflow.com/dudrn5704-naver-com/coco2017-person-ver
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 24, 2021
    Dataset provided by
    Naver Corporationhttp://www.navercorp.com/
    Naverhttps://naver.com/
    Authors
    dudrn5704@naver.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Person Bounding Boxes
    Description

    Coco2017 Person Ver

    ## Overview
    
    Coco2017 Person Ver is a dataset for object detection tasks - it contains Person annotations for 900 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  12. t

    COCO 2017 - Dataset - LDM

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). COCO 2017 - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/coco-2017
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    Object detection is one of the most foundational computer vision task and is essential for many real-world applications. The object detection pipeline has been developed rapidly, especially in the era of deep learning.

  13. COCO 2017

    • kaggle.com
    zip
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikdintel (2024). COCO 2017 [Dataset]. https://www.kaggle.com/datasets/snikhilrao/coco-2017
    Explore at:
    zip(26884588931 bytes)Available download formats
    Dataset updated
    Nov 14, 2024
    Authors
    Nikdintel
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    📌 What's Included:

    • Training Set: 118K images with annotations for detection, segmentation, and keypoints.
    • Validation Set: 5K images with full annotations for validation.
    • Testing Set: Images are divided into two splits—dev and challenge—replacing the four splits (dev, standard, reserve, challenge) used in previous years.
    • Stuff Annotations: Available for 40K images in the training set and 5K validation images, enabling semantic segmentation research.
    • Unlabeled Data: A set of 120K images with no annotations, mirroring the class distribution of the labeled data. This is ideal for exploring semi-supervised learning techniques.

    🔍 Key Changes in COCO 2017:

    • The train/val split was updated based on community feedback, now featuring 118K/5K images instead of the previous 83K/41K split.
    • While the annotations for detection and keypoints are consistent with previous years, additional stuff annotations were introduced in 2017.
    • Unlabeled data is now available for semi-supervised learning tasks, opening new avenues for experimentation.

    📂 Dataset Structure:

    • train2017: Images and annotations
    • val2017: Images and annotations
    • test2017: Images (no annotations provided)
    • unlabeled2017: Unlabeled images

    This dataset can be used for a variety of computer vision tasks, including object detection, instance segmentation, keypoint detection, semantic segmentation, and image captioning. Whether you're working on supervised or semi-supervised learning, this resource is designed to meet your needs.

  14. h

    coco2017-segmentation-10k-256x256

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ole, coco2017-segmentation-10k-256x256 [Dataset]. https://huggingface.co/datasets/peteole/coco2017-segmentation-10k-256x256
    Explore at:
    Authors
    Ole
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    📄 License and Attribution

    This dataset is a downsampled version of the COCO 2017 dataset, tailored for segmentation tasks. It has the following fields:

    image: 256x256 image segmentation: 256x256 image. Each pixel encodes the class of that pixel. See class_names_dict.json for a legend. captions: a list of captions for the image, each by a different labeler.

    Use the dataset as follows: import requests from datasets import load_dataset

    ds =… See the full description on the dataset page: https://huggingface.co/datasets/peteole/coco2017-segmentation-10k-256x256.

  15. R

    Coco2017 No Crowd Only People Dataset

    • universe.roboflow.com
    zip
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    multiplepeople (2023). Coco2017 No Crowd Only People Dataset [Dataset]. https://universe.roboflow.com/multiplepeople/coco2017-no-crowd-only-people
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 19, 2023
    Dataset authored and provided by
    multiplepeople
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Person Polygons
    Description

    COCO2017 No Crowd Only People

    ## Overview
    
    COCO2017 No Crowd Only People is a dataset for instance segmentation tasks - it contains Person annotations for 5,393 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  16. R

    Coco2017 0 ~ 1000 Person Ver Dataset

    • universe.roboflow.com
    zip
    Updated Dec 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dudrn5704@naver.com (2021). Coco2017 0 ~ 1000 Person Ver Dataset [Dataset]. https://universe.roboflow.com/dudrn5704-naver-com/coco2017-0---1000-person-ver/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 28, 2021
    Dataset authored and provided by
    dudrn5704@naver.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Person Bounding Boxes
    Description

    COCO2017 0 ~ 1000 Person Ver

    ## Overview
    
    COCO2017 0 ~ 1000 Person Ver is a dataset for object detection tasks - it contains Person annotations for 900 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  17. coco2017 Lance (train)

    • kaggle.com
    zip
    Updated Apr 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanay Mehta (2024). coco2017 Lance (train) [Dataset]. https://www.kaggle.com/datasets/heyytanay/coco2017-train-lance
    Explore at:
    zip(19181147792 bytes)Available download formats
    Dataset updated
    Apr 10, 2024
    Authors
    Tanay Mehta
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This is the COCO-2017 dataset's training split for object detection and segmentation saved in the Lance file format for blazing fast and memory-efficient I/O.

    This dataset only includes data necessary for object detection and segmentation.

    For detailed information on how the dataset was created, refer to my article on Curating Custom Datasets for efficient LLM training using Lance.

    Instructions for using this dataset

    This dataset is not supposed to be used on Kaggle Kernels since Lance requires the input directory of the dataset to have write access but Kaggle Kernel's input directory doesn't have it and the dataset size prohibits one from moving it to /kaggle/working. Hence, to use this dataset, you must download it by using the Kaggle API or through this page, and then move the unzipped files to a folder called coco2017_train.lance. Below are detailed snippets on how to download and use this dataset.

    First, download and unzip the dataset from your terminal (make sure you have your kaggle API key at ~/.kaggle/:

    $ pip install -q kaggle pyarrow pylance
    $ kaggle datasets download -d heyytanay/coco2017-train-lance
    $ mkdir coco2017_train.lance/
    $ unzip -qq coco2017-train-lance.zip -d coco2017_train.lance/
    $ rm coco2017-train-lance.zip
    

    Once this is done, you will find your dataset in the coco2017_train.lance/ folder. To load and get the gist of the data, run the below snippet.

    import lance
    dataset = lance.dataset('coco2017_train.lance/')
    print(dataset.count_rows())
    

    This will give you the total number of rows in the dataset.

  18. t

    MS-COCO 2017 test-dev17 dataset - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). MS-COCO 2017 test-dev17 dataset - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/ms-coco-2017-test-dev17-dataset
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The MS-COCO 2017 test-dev17 dataset is used to evaluate the performances of various RefineDet networks.

  19. h

    COCO2017

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia, COCO2017 [Dataset]. https://huggingface.co/datasets/Taoyang1/COCO2017
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Jia
    Description

    Taoyang1/COCO2017 dataset hosted on Hugging Face and contributed by the HF Datasets community

  20. COCO 2017 Object Detection Dataset

    • kaggle.com
    zip
    Updated Aug 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moein Shariatnia (2022). COCO 2017 Object Detection Dataset [Dataset]. https://www.kaggle.com/datasets/moeinshariatnia/coco-2017-object-detection-dataset
    Explore at:
    zip(19209582473 bytes)Available download formats
    Dataset updated
    Aug 9, 2022
    Authors
    Moein Shariatnia
    Description

    COCO Object Detection Dataset | 2017

    Downloaded from here and it includes Train images for now.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Padilla, coco2017 [Dataset]. https://huggingface.co/datasets/rafaelpadilla/coco2017

coco2017

COCO2017

rafaelpadilla/coco2017

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Authors
Padilla
Description

This dataset contains all COCO 2017 images and annotations split in training (118287 images) and validation (5000 images).

Search
Clear search
Close search
Google apps
Main menu