Official statistics are produced impartially and free from political influence.
A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Presents historic and projected data from the period and cohort life tables including the expectation of life (ex) the probability of dying (qx) and the numbers surviving (lx). Data is provided by age and sex for the UK and its constituent countries.
Source agency: Office for National Statistics
Designation: National Statistics
Language: English
Alternative title: Period and Cohort Life Tables
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Presents life expectancies on a period and cohort basis. Data is provided by age and sex for the UK and its constituent countries.
Source agency: Office for National Statistics
Designation: National Statistics
Language: English
Alternative title: Projected Life Expectancy
This table contains mortality indicators by sex for Canada and all provinces except Prince Edward Island. These indicators are derived from three-year complete life tables. Mortality indicators derived from single-year life tables are also available (table 13-10-0837). For Prince Edward Island, Yukon, the Northwest Territories and Nunavut, mortality indicators derived from three-year abridged life tables are available (table 13-10-0140).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Following the publication of the period and cohort life expectancy tables ONS prepares databases for the UK and each of the constituent countries containing mortality data used in the calculation of historic and projected life tables. Published for the first time in this release are tables of historic and projected qx (probability of dying at each age) and lx values (numbers of people surviving at each age) for the UK, on a period and cohort basis for each year 1951 to 2060.
Source agency: Office for National Statistics
Designation: Official Statistics not designated as National Statistics
Language: English
Alternative title: qx and lx tables
There are two types of life tables –cohort/generational and current/period life tables. Cohort life tables are constructed using the mortality experience of the cohort and may not be useful for the cohort itself because every member of the cohort has to die before such a table can be constructed. A current or period life table uses current mortality experience applied to a cohort of births to compute the life table. On the basis of age intervals, life tables are classified as complete or abridged. A complete life table uses exact single years and an abridged life table uses age intervals. This report presents five-year age interval abridged current life tables. Computation of an abridged life table from which life expectancy is derived requires mainly population and death data by age and sex. In this report, population data consist of the 1990, 2000, and 2010 census counts of residents of each Illinois County and the city of Chicago. These data were aggregated into five-year age groups and by sex and used as denominators in computing mortality rates. The death data were received from the Illinois Center for Health Statistics (ICHS) of the Office of Health Informatics (OHI). ICHS receives these data from the Illinois Vital Records System (IVRS). Number of deaths by sex and specific age for each county were obtained from 1989 to 2011 and aggregated at county level by five-year age groups for each sex. Three-year averages were then computed for the periods 1989-1991, 1999-2001, and 2009-2011 and were used as numerators in computing mortality rates. The overall life tables were constructed using Chiang’s (1984) Method II. This method assumes a homogeneous population in which all individuals are subjected to the same force of mortality, and in which survival of an individual is independent of the survival of any other individual in the group. The method does not remove fluctuations in observed data; therefore, the 2 produced life tables exhibit more the factual mortality pattern in the actual data and less the underlying mortality picture of the populations. Margin of errors were computed to provide basis for evaluating the accuracy of the estimated life expectancies.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reference categories – a. First year of follow up; b. Female. c. Non-Indigenous d. Age group 15-44 years. e. Charlson comorbidity index = 0; f. Non-severe sepsis patients; g. Non-bacteraemic patients.Multivariable analysis of predictors of excess mortality using Poisson regression.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Life tables for England and Wales, period and cohort, from the principal projection, single year of age 0 to 100. Historical data before 1961 are not national statistics.
Official statistics are produced impartially and free from political influence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains the cohort survival tables (per 1-year birth cohort) by sex and age for the population of the Netherlands. The table shows how many boys or girls out of a group of 100,000 newborns have reached the year in which they become 1, 2, 3, etc. years old. It is also possible to see how old these children will be on average. The table can be broken down into mortality probability, the number of people alive (table population), the number of deaths (table population) and (cohort) life expectancy per generation by gender and age. The (cohort) life expectancy, calculated from a cohort survival table, indicates what the actual lifespan is (or is expected to be, when the observed mortality probabilities are supplemented with mortality probabilities from the forecast period). See section 4 for an explanation of the difference between the period survival table and a cohort survival table. A choice can be made from figures in which only observed numbers have been calculated, or a series in which the observed numbers have been supplemented with future expectations of the number of deaths for the birth generations that are still alive. Data available: from birth generation 1850 Status of the figures: The figures based on the numbers of deaths observed up to and including the year 2021 are final. Figures supplemented with future expectations of the number of deaths come from the CBS Core Forecast 2022-2070. This forecast is reviewed once a year. Changes as of 16 December 2022: - The figures relating to mortality observations for 2021 have been incorporated in the table; - The figures relating to the forecasts have been replaced by those from the Core Forecast 2022-2070. When will new numbers come out? In December 2023, the mortality observations for 2022 will be processed in this table and the future expectations will be replaced by those from the Population Forecast 2023-2070.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundWhile combination antiretroviral therapy (cART) has significantly improved survival times for persons diagnosed with HIV, estimation of life expectancy (LE) for this cohort remains a challenge, as mortality rates are a function of both time since diagnosis and age, and mortality rates for the oldest age groups may not be available.MethodsA validated case-finding algorithm for HIV was used to update the cohort of HIV-positive adults who had entered care in Ontario, Canada as of 2012. The Chiang II abridged life table algorithm was modified to use mortality rates stratified by time since entering the cohort and to include various methods for extrapolation of the excess HIV mortality rates to older age groups.ResultsAs of 2012, there were approximately 15,000 adults in care for HIV in Ontario. The crude all-cause mortality rate declined from 2.6% (95%CI 2.3, 2.9) per year in 2000 to 1.3% (1.2, 1.5) in 2012. Mortality rates were elevated for the first year of care compared to subsequent years (rate ratio of 2.6 (95% CI 2.3, 3.1)). LE for a 20-year old living in Ontario was 62 years (expected age at death is 82), while LE for a 20-year old with HIV was estimated to be reduced to 47 years, for a loss of 15 years of life. Ignoring the higher mortality rates among new cases introduced a modest bias of 1.5 additional years of life lost. In comparison, using 55+ as the open-ended age group was a major source of bias, adding 11 years to the calculated LE.ConclusionsUse of age limits less than the expected age at death for the open-ended age group significantly overstates the estimated LE and is not recommended. The Chiang II method easily accommodated input of stratified mortality rates and extrapolation of excess mortality rates.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Data tables providing period and cohort life expectancy (ex) and projected population using the current mortality projections method and a proposed new method.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/I5O6OShttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/I5O6OS
A rapidly aging population, such as the United States today, is characterized by the increased prevalence of chronic impairment. Robust estimation of disability-free life expectancy (DFLE) is essential for examining whether additional years of life are spent in good health and whether life expectancy is increasing faster than the decline of disability rates. Over thirty years since its publication, Sullivan's method remains the most widely used method to estimate DFLE. Therefore, it is surprising to note that Sullivan did not provide any formal justification of his method. Debates in the literature have centered around the properties of Sullivan's method and have yielded conflicting results regarding the assumptions required for Sullivan's method. In this paper, we establish a statistical foundation of Sullivan's method. We prove that under stationarity assumptions, Sullivan's estimator is unbiased and consistent. This resolves the debate in the literature which has generally concluded that additional assumptions are necessary. We also show that the standard variance estimator is consistent and approximately unbiased. Finally, we demonstrate that Sullivan's method can be extended to estimate DFLE without stationarity assumptions. Such an extension is possible whenever a cohort life table and either consecutive cross-sectional disability surveys or a longitudinal survey are available. Our empirical analysis of the 1907 and 1912 U.S. birth cohorts suggests that while mortality rates remain approximately stationary, disability rates decline during this time period.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Source: Own calculation on data from Statistics Denmark.Cumulative Risks of Foster Care Placement from Birth to Age 18 for All Children in Denmark and Native Danish Children, Western Children, and Non-Western Children, 2005.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Life Table Data: Field-based, partial life table data for immature stages of Bemisia tabaci on cotton in Maricopa, Arizona, USA. Data were generated on approximately 200 individual insects per cohort with 2-5 cohorts per year for a total of 44 cohorts between 1997 and 2010. Data provide the marginal, stage-specific rates of mortality for eggs, and 1st, 2nd, 3rd, and 4th instar nymphs. Mortality is characterized as caused by inviability (eggs only), dislodgement, predation, parasitism and unknown. Detailed methods can be found in Naranjo and Ellsworth 2005 (Entomologia Experimentalis et Applicata 116(2): 93-108). The method takes advantage of the sessile nature of immature stages of this insect. Briefly, an observer follows individual eggs or settled first instar nymphs from natural populations on the underside of cotton leaves in the field with a hand lens and determines causes of death for each individual over time. Approximately 200 individual eggs and nymphs are observed for each cohort. Separately, densities of eggs and nymphs are monitored with standard methods (Naranjo and Flint 1994, Environmental Entomology 23: 254-266; Naranjo and Flint 1995, Environmental Entomology 24: 261-270) on a weekly basis.
Matrix Model Data: Life table data were used to provide parameters for population matrix models. Matrix models contain information about stage-specific rates for development, survival and reproduction. The model can be used to estimate overall population growth rate and can also be analyzed to determine which life stages contribute the most to changes in growth rates. Resources in this dataset:Resource Title: Matrix model data from Naranjo, S.E. (2017) Retrospective analysis of a classical biological control program. Journal of Applied Ecology. File Name: MatrixModelData.xlsxResource Description: Life table data were used to provide parameters for population matrix models. Matrix models contain information about stage-specific rates for development, survival and reproduction. The model can be used to estimate overall population growth rate and can also be analyzed to determine which life stages contribute the most to changes in growth rates. Resource Title: Data Dictionary: Life table data. File Name: DataDictionary_LifeTableData.csvResource Title: Life table data from Naranjo, S.E. (2017) Retrospective analysis of a classical biological control program. Journal of Applied Ecology. File Name: LifeTableData.xlsxResource Description: Field-based, partial life table data for immature stages of Bemisia tabaci on cotton in Maricopa, Arizona, USA. Data were generated on approximately 200 individual insects per cohort with 2-5 cohorts per years for a total of 44 cohorts between 1997 and 2010. Data provide the marginal, stage-specific rates of mortality for eggs, and 1st, 2nd, 3rd, and 4th instar nymphs. Mortality is characterized as caused by inviability (eggs only), dislodgement, predation, parasitism and unknown. Detailed methods can be found in Naranjo and Ellsworth 2005 (Entomologia, Experimentalis et Applicata 116: 93-108). The method takes advantage of the sessile nature of immature stages of this insect. Briefly, an observer follows individual eggs or settled first instar nymphs from natural populations on the underside of cotton leaves in the field with a hand lens and determines causes of death for each individual over time. Approximately 200 individual eggs and nymphs are observed for each cohort. Separately, densities of eggs and nymphs are monitored with standard methods (Naranjo and Flint 1994, Environmental Entomology 23: 254-266; Naranjo and Flint 1995, Environmental Entomology 24: 261-270) on a weekly basis. Resource Title: Life table data from Naranjo, S.E. (2017) Retrospective analysis of a classical biological control program. Journal of Applied Ecology. File Name: LifeTableData.csvResource Description: CSV version of the data. Field-based, partial life table data for immature stages of Bemisia tabaci on cotton in Maricopa, Arizona, USA. Data were generated on approximately 200 individual insects per cohort with 2-5 cohorts per years for a total of 44 cohorts between 1997 and 2010. Data provide the marginal, stage-specific rates of mortality for eggs, and 1st, 2nd, 3rd, and 4th instar nymphs. Mortality is characterized as caused by inviability (eggs only), dislodgement, predation, parasitism and unknown. Detailed methods can be found in Naranjo and Ellsworth 2005 (Entomologia, Experimentalis et Applicata 116: 93-108). The method takes advantage of the sessile nature of immature stages of this insect. Briefly, an observer follows individual eggs or settled first instar nymphs from natural populations on the underside of cotton leaves in the field with a hand lens and determines causes of death for each individual over time. Approximately 200 individual eggs and nymphs are observed for each cohort. Separately, densities of eggs and nymphs are monitored with standard methods (Naranjo and Flint 1994, Environmental Entomology 23: 254-266; Naranjo and Flint 1995, Environmental Entomology 24: 261-270) on a weekly basis.
Work life expectancy for a 50-year-old Tables Work Life Expectancy For A 50 Year OldTSV The indicator gives the percentages of employed people and one-year survival probabilities in the population aged 50. The average life expectancy of people aged 50 is divided into two parts: lifetime in employment and the remaining lifetime. The figures describe the average life expectancy and remaining lifetime in employment of an imaginary cohort at the time it reaches age 50, assuming that the cohort will experience the age-specific employment rates and mortality conditions of the year concerned throughout its total lifetime.
Official statistics are produced impartially and free from political influence.