Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Being physically active and eating a diet that is rich in fruits, vegetables, lean meats, and fiber can reduce the risk of colon cancer. Promoting healthy food retail and access to preventive care services are important measures that cities and communities can take to prevent colon cancer.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
In the period from 2017 to 2021, the incidence rate of colorectal cancer among males in the United States was around 40.4 per 100,000 population. This statistic displays the colorectal cancer incidence rate among U.S. residents from 2017 to 2021, by gender.
In 2022, the mortality rate of colorectal cancer in Europe was, among men, **** per 100,000, while among women it stood at **** per 100,000. For men, Croatia had the highest mortality rate at **** per 100,000, while Luxembourg had the lowest at **** per 100,000. For women, Croatia also had the highest mortality rate at **** per 100,000, while Austria had the lowest at **** per 100,000. This statistic depicts the mortality rate of colorectal cancer in Europe in 2022, by country and gender.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00228
In 2022, the incidence rate of colorectal cancer in the EU was, among men, **** per 100,000, while among women it stood at **** per 100,000. For men, Hungary had the highest incidence rate at ***** per 100,000, while Austria had the lowest at **** per 100,000. For women, Denmark had the highest incidence rate at **** per 100,000, while Austria had the lowest at **** per 100,000. This statistic depicts the incidence rate of colorectal cancer in the EU in 2022, by country and gender (per 100,000 population).
Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.Cancer incidence ratesIncidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00225
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths from colorectal cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Cancer Incidence data for Colorectal Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.
Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.Cancer incidence ratesIncidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity
In the period from 2018 to 2022, non-Hispanic Blacks had a colorectal cancer mortality rate of **** per 100,000 population. This statistic displays the colorectal cancer mortality rate among U.S. residents from 2018 to 2022, by race and ethnicity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Factors associated with colorectal cancer mortality (N = 18,816).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents. Margins of error are estimated at the 90% confidence level.
Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data
Why This Matters
Colorectal cancer is the third leading cause of cancer death in the U.S. for men and women. Although colorectal cancer is most common among people aged 65 to 74, there has been an increase in incidences among people aged 40 to 49.
Nationally, Black people are disproportionately likely to both have colorectal cancer and die from it. Hispanic residents, and especially those with limited English proficiency, report having the lowest rate of colorectal cancer screenings.
Racial disparities in education, poverty, health insurance coverage, and English language proficiency are all factors that contribute to racial gaps in receiving colorectal cancer screenings. Increased colorectal cancer screening utilization has been shown to nearly erase the racial disparities in the death rate of colorectal cancer.
The District Response
The Colorectal Cancer Control Program (DC3C) aims to reduce colon cancer incidence and mortality by increasing colorectal cancer screening rates among District residents.
DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide colorectal cancer screening services.
DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Observed and expected cancer mortalities and incidences during follow-up.
As of 2024, almost ******* people were living with a diagnosis of colorectal cancer in Italy. Most of them were men, with ******* cases. The graph presented shows the number of people living with a diagnosis of colorectal cancer in Italy as of 2024, by gender.
In 2018, Hungary reported ***** new colorectal cancer cases per 100,000 population, the highest incidence in Europe. This was followed by an incidence rate of **** colorectal cancer cases in Portugal. While in Denmark, **** colorectal cancer cases per 100,000 inhabitants were diagnosed in that year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Baseline characteristics of the patients (N = 18,816).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figure S1. A. 5-year net survivals for patients with right- and left-sided colon cancer in those aged less than 40 years old. B 5-year net survivals for patients with right- and left-sided colon cancer in those aged 40–54 years old. C 5-year net survivals for patients with right- and left-sided colon cancer in those aged 55–70 years old. D 5-year net survivals for patients with right- and left-sided colon cancer in those aged > 70 years old. (ZIP 186 kb)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Annual Percentage Change (APC, %) in colorectal cancer incidence rates by sex, age and calendar period (segment) of diagnosis: England, 1971–2014.
In the period from 2018 to 2022, around 15 per 100,000 males in the United States died due to colorectal cancer. This statistic displays the colorectal cancer mortality rate among U.S. residents from 2018 to 2022, by gender.
Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Being physically active and eating a diet that is rich in fruits, vegetables, lean meats, and fiber can reduce the risk of colon cancer. Promoting healthy food retail and access to preventive care services are important measures that cities and communities can take to prevent colon cancer.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.