82 datasets found
  1. MERGE Dataset

    • zenodo.org
    zip
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva (2025). MERGE Dataset [Dataset]. http://doi.org/10.5281/zenodo.13939205
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The MERGE dataset is a collection of audio, lyrics, and bimodal datasets for conducting research on Music Emotion Recognition. A complete version is provided for each modality. The audio datasets provide 30-second excerpts for each sample, while full lyrics are provided in the relevant datasets. The amount of available samples in each dataset is the following:

    • MERGE Audio Complete: 3554
    • MERGE Audio Balanced: 3232
    • MERGE Lyrics Complete: 2568
    • MERGE Lyrics Balanced: 2400
    • MERGE Bimodal Complete: 2216
    • MERGE Bimodal Balanced: 2000

    Additional Contents

    Each dataset contains the following additional files:

    • av_values: File containing the arousal and valence values for each sample sorted by their identifier;
    • tvt_dataframes: Train, validate, and test splits for each dataset. Both a 70-15-15 and a 40-30-30 split are provided.

    Metadata

    A metadata spreadsheet is provided for each dataset with the following information for each sample, if available:

    • Song (Audio and Lyrics datasets) - Song identifiers. Identifiers starting with MT were extracted from the AllMusic platform, while those starting with A or L were collected from private collections;
    • Quadrant - Label corresponding to one of the four quadrants from Russell's Circumplex Model;
    • AllMusic Id - For samples starting with A or L, the matching AllMusic identifier is also provided. This was used to complement the available information for the samples originally obtained from the platform;
    • Artist - First performing artist or band;
    • Title - Song title;
    • Relevance - AllMusic metric representing the relevance of the song in relation to the query used;
    • Duration - Song length in seconds;
    • Moods - User-generated mood tags extracted from the AllMusic platform and available in Warriner's affective dictionary;
    • MoodsAll - User-generated mood tags extracted from the AllMusic platform;
    • Genres - User-generated genre tags extracted from the AllMusic platform;
    • Themes - User-generated theme tags extracted from the AllMusic platform;
    • Styles - User-generated style tags extracted from the AllMusic platform;
    • AppearancesTrackIDs - All AllMusic identifiers related with a sample;
    • Sample - Availability of the sample in the AllMusic platform;
    • SampleURL - URL to the 30-second excerpt in AllMusic;
    • ActualYear - Year of song release.

    Citation

    If you use some part of the MERGE dataset in your research, please cite the following article:

    Louro, P. L. and Redinho, H. and Santos, R. and Malheiro, R. and Panda, R. and Paiva, R. P. (2024). MERGE - A Bimodal Dataset For Static Music Emotion Recognition. arxiv. URL: https://arxiv.org/abs/2407.06060.

    BibTeX:

    @misc{louro2024mergebimodaldataset,
    title={MERGE -- A Bimodal Dataset for Static Music Emotion Recognition},
    author={Pedro Lima Louro and Hugo Redinho and Ricardo Santos and Ricardo Malheiro and Renato Panda and Rui Pedro Paiva},
    year={2024},
    eprint={2407.06060},
    archivePrefix={arXiv},
    primaryClass={cs.SD},
    url={https://arxiv.org/abs/2407.06060},
    }

    Acknowledgements

    This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020.

    Renato Panda was supported by Ci2 - FCT UIDP/05567/2020.

  2. f

    Data from: HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE...

    • scielo.figshare.com
    tiff
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diego Ariel de Lima; Camilo Partezani Helito; Lana Lacerda de Lima; Renata Clazzer; Romeu Krause Gonçalves; Olavo Pires de Camargo (2023). HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE USING R SOFTWARE AND RSTUDIO [Dataset]. http://doi.org/10.6084/m9.figshare.19899537.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Diego Ariel de Lima; Camilo Partezani Helito; Lana Lacerda de Lima; Renata Clazzer; Romeu Krause Gonçalves; Olavo Pires de Camargo
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    ABSTRACT Meta-analysis is an adequate statistical technique to combine results from different studies, and its use has been growing in the medical field. Thus, not only knowing how to interpret meta-analysis, but also knowing how to perform one, is fundamental today. Therefore, the objective of this article is to present the basic concepts and serve as a guide for conducting a meta-analysis using R and RStudio software. For this, the reader has access to the basic commands in the R and RStudio software, necessary for conducting a meta-analysis. The advantage of R is that it is a free software. For a better understanding of the commands, two examples were presented in a practical way, in addition to revising some basic concepts of this statistical technique. It is assumed that the data necessary for the meta-analysis has already been collected, that is, the description of methodologies for systematic review is not a discussed subject. Finally, it is worth remembering that there are many other techniques used in meta-analyses that were not addressed in this work. However, with the two examples used, the article already enables the reader to proceed with good and robust meta-analyses. Level of Evidence V, Expert Opinion.

  3. NSF/NCAR GV HIAPER 1 Minute Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NSF/NCAR GV HIAPER 1 Minute Data Merge [Dataset]. http://doi.org/10.26023/R1RA-JHKZ-W913
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 18, 2012 - Jun 30, 2012
    Area covered
    Description

    This data set contains NSF/NCAR GV HIAPER 1 Minute Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 30 June 2012. These are updated merges from the NASA DC3 archive that were made available 13 June 2014. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg60-gV_merge_YYYYMMdd_R5_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.

  4. n

    Multilevel modeling of time-series cross-sectional data reveals the dynamic...

    • data.niaid.nih.gov
    • dataone.org
    • +2more
    zip
    Updated Mar 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kodai Kusano (2020). Multilevel modeling of time-series cross-sectional data reveals the dynamic interaction between ecological threats and democratic development [Dataset]. http://doi.org/10.5061/dryad.547d7wm3x
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    University of Nevada, Reno
    Authors
    Kodai Kusano
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    What is the relationship between environment and democracy? The framework of cultural evolution suggests that societal development is an adaptation to ecological threats. Pertinent theories assume that democracy emerges as societies adapt to ecological factors such as higher economic wealth, lower pathogen threats, less demanding climates, and fewer natural disasters. However, previous research confused within-country processes with between-country processes and erroneously interpreted between-country findings as if they generalize to within-country mechanisms. In this article, we analyze a time-series cross-sectional dataset to study the dynamic relationship between environment and democracy (1949-2016), accounting for previous misconceptions in levels of analysis. By separating within-country processes from between-country processes, we find that the relationship between environment and democracy not only differs by countries but also depends on the level of analysis. Economic wealth predicts increasing levels of democracy in between-country comparisons, but within-country comparisons show that democracy declines as countries become wealthier over time. This relationship is only prevalent among historically wealthy countries but not among historically poor countries, whose wealth also increased over time. By contrast, pathogen prevalence predicts lower levels of democracy in both between-country and within-country comparisons. Our longitudinal analyses identifying temporal precedence reveal that not only reductions in pathogen prevalence drive future democracy, but also democracy reduces future pathogen prevalence and increases future wealth. These nuanced results contrast with previous analyses using narrow, cross-sectional data. As a whole, our findings illuminate the dynamic process by which environment and democracy shape each other.

    Methods Our Time-Series Cross-Sectional data combine various online databases. Country names were first identified and matched using R-package “countrycode” (Arel-Bundock, Enevoldsen, & Yetman, 2018) before all datasets were merged. Occasionally, we modified unidentified country names to be consistent across datasets. We then transformed “wide” data into “long” data and merged them using R’s Tidyverse framework (Wickham, 2014). Our analysis begins with the year 1949, which was occasioned by the fact that one of the key time-variant level-1 variables, pathogen prevalence was only available from 1949 on. See our Supplemental Material for all data, Stata syntax, R-markdown for visualization, supplemental analyses and detailed results (available at https://osf.io/drt8j/).

  5. r

    R codes and dataset for Visualisation of Diachronic Constructional Change...

    • researchdata.edu.au
    Updated Apr 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg (2019). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768
    Explore at:
    Dataset updated
    Apr 1, 2019
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Publication


    Primahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387

    Description of R codes and data files in the repository

    This repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).

    The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).

    These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt.

    Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.

    Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).

    The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

  6. Data from: KORUS-AQ Aircraft Merge Data Files

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA/LARC/SD/ASDC (2025). KORUS-AQ Aircraft Merge Data Files [Dataset]. https://catalog.data.gov/dataset/korus-aq-aircraft-merge-data-files
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    KORUSAQ_Merge_Data are pre-generated merge data files combining various products collected during the KORUS-AQ field campaign. This collection features pre-generated merge files for the DC-8 aircraft. Data collection for this product is complete.The KORUS-AQ field study was conducted in South Korea during May-June, 2016. The study was jointly sponsored by NASA and Korea’s National Institute of Environmental Research (NIER). The primary objectives were to investigate the factors controlling air quality in Korea (e.g., local emissions, chemical processes, and transboundary transport) and to assess future air quality observing strategies incorporating geostationary satellite observations. To achieve these science objectives, KORUS-AQ adopted a highly coordinated sampling strategy involved surface and airborne measurements including both in-situ and remote sensing instruments.Surface observations provided details on ground-level air quality conditions while airborne sampling provided an assessment of conditions aloft relevant to satellite observations and necessary to understand the role of emissions, chemistry, and dynamics in determining air quality outcomes. The sampling region covers the South Korean peninsula and surrounding waters with a primary focus on the Seoul Metropolitan Area. Airborne sampling was primarily conducted from near surface to about 8 km with extensive profiling to characterize the vertical distribution of pollutants and their precursors. The airborne observational data were collected from three aircraft platforms: the NASA DC-8, NASA B-200, and Hanseo King Air. Surface measurements were conducted from 16 ground sites and 2 ships: R/V Onnuri and R/V Jang Mok.The major data products collected from both the ground and air include in-situ measurements of trace gases (e.g., ozone, reactive nitrogen species, carbon monoxide and dioxide, methane, non-methane and oxygenated hydrocarbon species), aerosols (e.g., microphysical and optical properties and chemical composition), active remote sensing of ozone and aerosols, and passive remote sensing of NO2, CH2O, and O3 column densities. These data products support research focused on examining the impact of photochemistry and transport on ozone and aerosols, evaluating emissions inventories, and assessing the potential use of satellite observations in air quality studies.

  7. NASA DC-8 10 Second Data Merge

    • data.ucar.edu
    archive
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NASA DC-8 10 Second Data Merge [Dataset]. http://doi.org/10.26023/CHJ0-RYQ4-GR10
    Explore at:
    archiveAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 18, 2012 - Jun 22, 2012
    Area covered
    Description

    This data set contains NASA DC-8 10 Second Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. These merges are an updated version provided by NASA. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg10-dc8_merge_YYYYMMdd_R*_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments. For the latest information on the updates to this dataset, please see the readme file.

  8. d

    Physiological data and R script for running physiology combined model for...

    • search.dataone.org
    • zenodo.org
    • +1more
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gengping Zhu; Javier Gutierrez Illan; David W. Crowder (2025). Physiological data and R script for running physiology combined model for Drosophila suzukii [Dataset]. http://doi.org/10.5061/dryad.gxd2547mj
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Gengping Zhu; Javier Gutierrez Illan; David W. Crowder
    Time period covered
    Jan 1, 2021
    Description

    This is the dataset that accompanies an article entitled "The use of insect life tables in optimizing invasive pest distributional models" that would be published in Ecography. The dataset include two R script that used to generate physical model and the physiology combined model respectively. Our paper shows that the physiology combined model show good performance when applying ecological niche model in risk assessment. We addressed this by determining whether incorporating physiological data from life table analyses of an invasive insect, Drosophila suzukii, improved predictions of ecological niche models. The dataset also include the physiology data D. suzukii that we assembled for running our physiology combined model.

  9. f

    Dataset for: Sequential trials in the context of competing risks: concepts...

    • wiley.figshare.com
    txt
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Corine Baayen; Christelle Volteau; Cyril Flamant; Paul Blanche (2023). Dataset for: Sequential trials in the context of competing risks: concepts and case study, with R and SAS code [Dataset]. http://doi.org/10.6084/m9.figshare.7991189.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Wiley
    Authors
    Corine Baayen; Christelle Volteau; Cyril Flamant; Paul Blanche
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sequential designs and competing risks methodology are both well established. Their combined use has recently received some attention from a theoretical perspective, but their joint application in practice has been discussed less. The aim of this paper is to provide the applied statistician with a basic understanding of both sequential design theory and competing risks methodology and how to combine them in practice. Relevant references to more detailed theoretical discussions are provided and all discussions are illustrated using a real case study. Extensive R and SAS code is provided in the online supplementary material.

  10. d

    Data from: Cultivar resistance to common scab disease of potato is dependent...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Cultivar resistance to common scab disease of potato is dependent on the pathogen species [Dataset]. https://catalog.data.gov/dataset/data-from-cultivar-resistance-to-common-scab-disease-of-potato-is-dependent-on-the-pathoge-53c3e
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    All data from the paper "Cultivar resistance to common scab disease of potato is dependent on the pathogen species." Three separate datasets are included: A csv file with the disease severity of three common scab pathogens across 55 different potato cultivars in a greenhouse pot assay (Figures 2-5 in the associated paper). The included R script was used with this data to perform the ANOVA for the data from the greenhouse pot assay (Table 2 in the associated paper). This script can be used in R for any similar dataset to calculate the significance and percent of total variation for any number of user-defined fixed effects. A zipped file with all of the qPCR data for the expression of the txtAB genes (Figure 6 in the associated paper). An Excel file with the HPLC data for making the thaxtomin detection standard curve and quantifying the amount of thaxtomin in the test sample. Resources in this dataset:Resource Title: Streptomyces pot assay data. File Name: 18.4.2updatedfileAllDataPotAssay.csvResource Description: Combined data from all Streptomyces - potato pot assays from the paper "Cultivar resistance to common scab disease of potato is dependent on the pathogen species." This csv file can be used with the example R script "DiseaseseverityEstimateScript."Resource Title: Combined qPCR data.. File Name: CombinedtxtABqPCRresults.zipResource Description: Zipped file that contains all qPCR data of txtAB gene expression in all experimental conditions. Combined qPCR data from Figure 6 of the paper "Cultivar resistance to common scab disease of potato is dependent on the pathogen species."Resource Title: R script for estimating disease severity. File Name: DiseaseSeverityEstimateScript.txtResource Description: R script used in combination with the "18.4.2updatedfileAllDataPotAssay.csv" file for generating the disease severity estimates (Figures 2-4) in the paper "Combined qPCR data from Figure 6 of the paper "Cultivar resistance to common scab disease of potato is dependent on the pathogen species."Resource Title: Thaxtomin standard curve and quantification - All data. File Name: Thaxtomin_CalCurve_log_log-Scale_12072018 (003).xlsxResource Description: Excel file with two sheets. The first sheet is all of the HPLC data used for calculating the standard curve of thaxtomin using known standards. The second sheet is the quantification data for the abundance of thaxtomin across the experimental groups. Data presented as Figure 6 in the paper "Combined qPCR data from Figure 6 of the paper "Cultivar resistance to common scab disease of potato is dependent on the pathogen species."

  11. ESA Soil Moisture Climate Change Initiative (Soil_Moisture_cci):...

    • catalogue.ceda.ac.uk
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wouter Dorigo; Wolfgang Preimesberger; L Moesinger; Adam Pasik; T. Scanlon; S. Hahn; R. Van der Schalie; M. Van der Vliet; R. De Jeu; R. Kidd; N. Rodriguez-Fernandez; M. Hirschi (2023). ESA Soil Moisture Climate Change Initiative (Soil_Moisture_cci): Experimental Break-Adjusted COMBINED Product, Version 07.1 [Dataset]. https://catalogue.ceda.ac.uk/uuid/0ae6b18caf8a4aeba7359f11b8ad49ae
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Wouter Dorigo; Wolfgang Preimesberger; L Moesinger; Adam Pasik; T. Scanlon; S. Hahn; R. Van der Schalie; M. Van der Vliet; R. De Jeu; R. Kidd; N. Rodriguez-Fernandez; M. Hirschi
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/esacci_soilmoisture_terms_and_conditions.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/esacci_soilmoisture_terms_and_conditions.pdf

    Time period covered
    Nov 1, 1978 - Dec 31, 2021
    Area covered
    Earth
    Variables measured
    latitude, longitude, soil_moisture_content, soil_moisture_content status_flag
    Description

    An experimental break-adjusted soil-moisture product has been generated by the ESA Soil Moisture Climate Change Initiative (Soil_Moisture_cci) project for their v07.1 data release. The product attempts to reduce breaks in the final CCI product by matching the statistics of the datasets between merging periods. At v07.1, the break-adjustment process (explained in Preimesberger et al. 2020) is applied only to the COMBINED product, using ERA5 soil moisture as a reference. The Soil Moisture CCI COMBINED dataset is one of three datasets created as part of the European Space Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) Climate Change Initiative (CCI) project. The product has been created by directly merging Level 2 scatterometer and radiometer soil moisture products derived from the AMI-WS, ASCAT, SMMR, SSM/I, TMI, AMSR-E, WindSat, FY-3B, FY-3C, FY3D, AMSR2, SMOS, GPM and SMAP satellite instruments. PASSIVE and ACTIVE products have also been created.

    The v07.1 COMBINED break-adjusted product, provided as global daily images in NetCDF-4 classic file format, presents a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. It is provided in volumetric units [m3 m-3] and covers the period (yyyy-mm-dd) 1978-11-01 to 2021-12-31. For information regarding the theoretical and algorithmic base of the product, please see the Algorithm Theoretical Baseline Document and Preimesberger et al. 2020. Additional reference documents and information relating to the dataset can also be found on the CCI Soil Moisture project website.

    The data set should be cited using all of the following references:

    1. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019

    2. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001

    3. Preimesberger, W., Scanlon, T., Su, C. -H., Gruber, A. and Dorigo, W., "Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data Record," in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 2845-2862, April 2021, doi: 10.1109/TGRS.2020.3012896.

  12. n

    ESA Soil Moisture Climate Change Initiative (Soil_Moisture_cci): COMBINED...

    • cmr.earthdata.nasa.gov
    • fedeo.ceos.org
    • +2more
    not provided
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ESA Soil Moisture Climate Change Initiative (Soil_Moisture_cci): COMBINED product, Version 06.1 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2548143086-FEDEO.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Jun 17, 2025
    Time period covered
    Nov 1, 1978 - Dec 31, 2020
    Area covered
    Earth
    Description

    The Soil Moisture CCI COMBINED dataset is one of three datasets created as part of the European Space Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) Climate Change Initiative (CCI) project. The product has been created by directly merging Level 2 scatterometer and radiometer soil moisture products derived from the AMI-WS, ASCAT, SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, SMOS, SMAP, FY-3B and GPM satellite instruments. PASSIVE and ACTIVE products have also been created.The v06.1 COMBINED product, provided as global daily images in NetCDF-4 classic file format, presents a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. It is provided in volumetric units [m3 m-3] and covers the period (yyyy-mm-dd) 1978-11-01 to 2020-12-31. For information regarding the theoretical and algorithmic base of the product, please see the Algorithm Theoretical Baseline Document. Additional reference documents and information relating to the dataset can also be found on the CCI Soil Moisture project website.The data set should be cited using the following references:1. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-20192. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001

  13. NASA DC-8 SAGAAERO Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NASA DC-8 SAGAAERO Data Merge [Dataset]. http://doi.org/10.26023/ANQE-HZRR-P30K
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 18, 2012 - Jun 22, 2012
    Area covered
    Description

    This data set contains NASA DC-8 SAGAAERO Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. These merge files were updated by NASA. The data have been merged to SAGAAero file timeline. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrgSAGAAero-dc8_merge_YYYYMMdd_R*_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.

  14. R scripts

    • figshare.com
    txt
    Updated May 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xueying Han (2018). R scripts [Dataset]. http://doi.org/10.6084/m9.figshare.5513170.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 10, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Xueying Han
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R scripts in this fileset are those used in the PLOS ONE publication "A snapshot of translational research funded by the National Institutes of Health (NIH): A case study using behavioral and social science research awards and Clinical and Translational Science Awards funded publications." The article can be accessed here: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196545This consists of all R scripts used for data cleaning, data manipulation, and statistical analysis used in the publication.There are eleven files in total:1. "Step1a.bBSSR.format.grants.and.publications.data.R" combines all bBSSR 2008-2014 grant award data and associated publications downloaded from NIH Reporter. 2. "Step1b.BSSR.format.grants.and.publications.data.R" combines all BSSR-only 2008-2014 grant award data and associated publications downloaded from NIH Reporter. 3. "Step2a.bBSSR.get.pubdates.transl.and.all.grants.R" queries PubMed and downloads associated bBSSR publication data.4. "Step2b.BSSR.get.pubdates.transl.and.all.grants.R" queries PubMed and downloads associated BSSR-only publication data.5. "Step3.summary.stats.R" performs summary statistics6. "Step4.time.to.first.publication.R" performs time to first publication analysis.7. "Step5.time.to.citation.analysis.R" performs time to first citation and time to overall citation analyses.8. "Step6.combine.NIH.iCite.data.R" combines NIH iCite citation data.9. "Step7.iCite.data.analysis.R" performs citation analysis on combined iCite data.10. "Step8.MeSH.descriptors.R" queries PubMed and pulls down all MeSH descriptors for all publications11. "Step9.CTSA.publications.R" compares the percent of translational publications among bBSSR, BSSR-only, and CTSA publications.

  15. R scripts used to analyze rodent call statistics generated by 'DeepSqueak'

    • figshare.com
    zip
    Updated May 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathijs Blom (2021). R scripts used to analyze rodent call statistics generated by 'DeepSqueak' [Dataset]. http://doi.org/10.6084/m9.figshare.14696304.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 28, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mathijs Blom
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The scripts in this folder weer used to combine all call statistic files per day into one file, resulting in nine files containing all call statistics per data. The script ‘merging_dataset.R’ was used to combine all days worth of call statistics and create subsets of two frequency ranges (18-32 and 32-96). The script ‘camera_data’ was used to combine all camera and observation data.

  16. e

    cda1051_src_rt-data-aggregate.R - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). cda1051_src_rt-data-aggregate.R - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/207444a3-9036-5d5c-acff-e1db60116391
    Explore at:
    Dataset updated
    Jul 23, 2025
    Description

    R script used to aggregate and combine the psycholinguistic and reaction time data into a single file.

  17. DLR Falcon 1 Second Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). DLR Falcon 1 Second Data Merge [Dataset]. http://doi.org/10.26023/PYCX-YRVR-AB0W
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 29, 2012 - Jun 14, 2012
    Area covered
    Description

    This data set contains DLR Falcon 1 Second Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 29 May 2012 through 14 June 2012. These merges were created using data in the NASA DC3 archive as of September 25, 2013. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg01-falcon_merge_YYYYMMdd_R1_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.

  18. Data supporting the Master thesis "Monitoring von Open Data Praktiken -...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Zinke; Katharina Zinke (2024). Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" [Dataset]. http://doi.org/10.5281/zenodo.14196539
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Katharina Zinke; Katharina Zinke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" (Monitoring open data practices - challenges in finding data publications using the example of publications by researchers at TU Dresden) - Katharina Zinke, Institut für Bibliotheks- und Informationswissenschaften, Humboldt-Universität Berlin, 2023

    This ZIP-File contains the data the thesis is based on, interim exports of the results and the R script with all pre-processing, data merging and analyses carried out. The documentation of the additional, explorative analysis is also available. The actual PDFs and text files of the scientific papers used are not included as they are published open access.

    The folder structure is shown below with the file names and a brief description of the contents of each file. For details concerning the analyses approach, please refer to the master's thesis (publication following soon).

    ## Data sources

    Folder 01_SourceData/

    - PLOS-Dataset_v2_Mar23.csv (PLOS-OSI dataset)

    - ScopusSearch_ExportResults.csv (export of Scopus search results from Scopus)

    - ScopusSearch_ExportResults.ris (export of Scopus search results from Scopus)

    - Zotero_Export_ScopusSearch.csv (export of the file names and DOIs of the Scopus search results from Zotero)

    ## Automatic classification

    Folder 02_AutomaticClassification/

    - (NOT INCLUDED) PDFs folder (Folder for PDFs of all publications identified by the Scopus search, named AuthorLastName_Year_PublicationTitle_Title)

    - (NOT INCLUDED) PDFs_to_text folder (Folder for all texts extracted from the PDFs by ODDPub, named AuthorLastName_Year_PublicationTitle_Title)

    - PLOS_ScopusSearch_matched.csv (merge of the Scopus search results with the PLOS_OSI dataset for the files contained in both)

    - oddpub_results_wDOIs.csv (results file of the ODDPub classification)

    - PLOS_ODDPub.csv (merge of the results file of the ODDPub classification with the PLOS-OSI dataset for the publications contained in both)

    ## Manual coding

    Folder 03_ManualCheck/

    - CodeSheet_ManualCheck.txt (Code sheet with descriptions of the variables for manual coding)

    - ManualCheck_2023-06-08.csv (Manual coding results file)

    - PLOS_ODDPub_Manual.csv (Merge of the results file of the ODDPub and PLOS-OSI classification with the results file of the manual coding)

    ## Explorative analysis for the discoverability of open data

    Folder04_FurtherAnalyses

    Proof_of_of_Concept_Open_Data_Monitoring.pdf (Description of the explorative analysis of the discoverability of open data publications using the example of a researcher) - in German

    ## R-Script

    Analyses_MA_OpenDataMonitoring.R (R-Script for preparing, merging and analyzing the data and for performing the ODDPub algorithm)

  19. D

    Replication Data for: Wake merging and turbulence transition downstream of...

    • dataverse.no
    • search.dataone.org
    Updated Jun 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Jason Hearst; R. Jason Hearst; Fanny Olivia Johannessen Berstad; Ingrid Neunaber; Ingrid Neunaber; Fanny Olivia Johannessen Berstad (2025). Replication Data for: Wake merging and turbulence transition downstream of side-by-side porous discs [Dataset]. http://doi.org/10.18710/XAEWC5
    Explore at:
    application/x-rlang-transport(1417054263), application/x-rlang-transport(1363277492), application/x-rlang-transport(1400436794), txt(7883), application/x-rlang-transport(1355448278), application/x-rlang-transport(1069205992), application/x-rlang-transport(1389202797), application/x-rlang-transport(1434576877), application/x-rlang-transport(959411386), application/x-rlang-transport(1373148467), application/x-rlang-transport(1398098974), application/x-rlang-transport(1195049341), application/x-rlang-transport(1605897578), application/x-rlang-transport(1341687981), application/x-rlang-transport(1276474862), application/x-rlang-transport(1097556108), application/x-rlang-transport(1412349302), application/x-rlang-transport(1471679338), application/x-rlang-transport(1292190917), application/x-rlang-transport(1033022936), application/x-rlang-transport(1287168311), application/x-rlang-transport(1425403151), application/x-rlang-transport(1417989437), application/x-rlang-transport(1361195525), application/x-rlang-transport(1313472566)Available download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    DataverseNO
    Authors
    R. Jason Hearst; R. Jason Hearst; Fanny Olivia Johannessen Berstad; Ingrid Neunaber; Ingrid Neunaber; Fanny Olivia Johannessen Berstad
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    These are the streamwise velocity time series measured in the wakes of two sets of porous discs in side-by-side setting as used in the manuscript ``Wake merging and turbulence transition downstream of side-by-side porous discs´´ which is accepted by Journal of Fluid Mechanics. Data was obtained by means of hot-wire anemometry in the Large Scale Wind Tunnel at the Norwegian University of Science and Technology in near-laminar inflow (background turbulence intensity of approximately 0.3%) at an inflow velocity of 10m/s (diameter-based Reynolds number 125000). Two types of porous discs with diameters D = 0.2m, one with uniform blockage and one with radially changing blockage, were used. Three spacings, namely 1.5D, 2D and 3D, were investigated. Span-wise profiles were measured at 8D and 30D downstream for each case, and a streamwise profile along the centerline between the discs was additionally obtained. In addition, measurements downstream of both disc types (singe disc setting) are provided as comparison. The scope of these experiments was to study the merging mechanisms of the turbulence when the two wakes are meeting.

  20. NASA DC-8 1 Minute Data Merge

    • data.ucar.edu
    ascii
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao Chen; Jennifer R. Olson; Michael Shook (2024). NASA DC-8 1 Minute Data Merge [Dataset]. http://doi.org/10.26023/VM9C-1C16-H003
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Gao Chen; Jennifer R. Olson; Michael Shook
    Time period covered
    May 1, 2012 - Jun 30, 2012
    Area covered
    Description

    This dataset contains NASA DC-8 1 Minute Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. This dataset contains updated data provided by NASA. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg60-dc8_merge_YYYYMMdd_R5_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This dataset is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and dataset comments. For more information on updates to this dataset, please see the readme file.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva (2025). MERGE Dataset [Dataset]. http://doi.org/10.5281/zenodo.13939205
Organization logo

MERGE Dataset

Explore at:
zipAvailable download formats
Dataset updated
Feb 7, 2025
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Pedro Lima Louro; Pedro Lima Louro; Hugo Redinho; Hugo Redinho; Ricardo Santos; Ricardo Santos; Ricardo Malheiro; Ricardo Malheiro; Renato Panda; Renato Panda; Rui Pedro Paiva; Rui Pedro Paiva
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Description

The MERGE dataset is a collection of audio, lyrics, and bimodal datasets for conducting research on Music Emotion Recognition. A complete version is provided for each modality. The audio datasets provide 30-second excerpts for each sample, while full lyrics are provided in the relevant datasets. The amount of available samples in each dataset is the following:

  • MERGE Audio Complete: 3554
  • MERGE Audio Balanced: 3232
  • MERGE Lyrics Complete: 2568
  • MERGE Lyrics Balanced: 2400
  • MERGE Bimodal Complete: 2216
  • MERGE Bimodal Balanced: 2000

Additional Contents

Each dataset contains the following additional files:

  • av_values: File containing the arousal and valence values for each sample sorted by their identifier;
  • tvt_dataframes: Train, validate, and test splits for each dataset. Both a 70-15-15 and a 40-30-30 split are provided.

Metadata

A metadata spreadsheet is provided for each dataset with the following information for each sample, if available:

  • Song (Audio and Lyrics datasets) - Song identifiers. Identifiers starting with MT were extracted from the AllMusic platform, while those starting with A or L were collected from private collections;
  • Quadrant - Label corresponding to one of the four quadrants from Russell's Circumplex Model;
  • AllMusic Id - For samples starting with A or L, the matching AllMusic identifier is also provided. This was used to complement the available information for the samples originally obtained from the platform;
  • Artist - First performing artist or band;
  • Title - Song title;
  • Relevance - AllMusic metric representing the relevance of the song in relation to the query used;
  • Duration - Song length in seconds;
  • Moods - User-generated mood tags extracted from the AllMusic platform and available in Warriner's affective dictionary;
  • MoodsAll - User-generated mood tags extracted from the AllMusic platform;
  • Genres - User-generated genre tags extracted from the AllMusic platform;
  • Themes - User-generated theme tags extracted from the AllMusic platform;
  • Styles - User-generated style tags extracted from the AllMusic platform;
  • AppearancesTrackIDs - All AllMusic identifiers related with a sample;
  • Sample - Availability of the sample in the AllMusic platform;
  • SampleURL - URL to the 30-second excerpt in AllMusic;
  • ActualYear - Year of song release.

Citation

If you use some part of the MERGE dataset in your research, please cite the following article:

Louro, P. L. and Redinho, H. and Santos, R. and Malheiro, R. and Panda, R. and Paiva, R. P. (2024). MERGE - A Bimodal Dataset For Static Music Emotion Recognition. arxiv. URL: https://arxiv.org/abs/2407.06060.

BibTeX:

@misc{louro2024mergebimodaldataset,
title={MERGE -- A Bimodal Dataset for Static Music Emotion Recognition},
author={Pedro Lima Louro and Hugo Redinho and Ricardo Santos and Ricardo Malheiro and Renato Panda and Rui Pedro Paiva},
year={2024},
eprint={2407.06060},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2407.06060},
}

Acknowledgements

This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020.

Renato Panda was supported by Ci2 - FCT UIDP/05567/2020.

Search
Clear search
Close search
Google apps
Main menu