Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterA 40-minute tutorial to use OGC webservices offered by the Mission Atlantic GeoNode in your data analysis. The workshop makes use of Python Notebooks and common GIS Software (ArcGIS and QGIS), basic knowledge of Python and/or GIS software is recommended. • Introduction to OGC services • Search through metadata using the OGC Catalogue Service (CSW) • Visualize data using OGC Web Mapping Service (WMS) • Subset and download data using OGC Web Feature and Coverage Services (WFS/WCS) • Use OGC services with QGIS and/or ArcGIS
Facebook
TwitterCan your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to, or the know how to, take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the storage and sharing of a broad class of hydrologic data including time series, geographic features and rasters, multidimensional space-time data and structured collections of data representing river geometry. Web service tools and a python client library provide researchers with access to high performance computing resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This talk will illustrate web and client based use of data services that support the delineation of watersheds to define a modeling domain, then extract terrain and land use information to automatically configure the inputs required for hydrologic models. These services support the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation and generation of hydrology-based terrain information such as wetness index and stream networks. These services also support the derivation of inputs for the Utah Energy Balance snowmelt model used to address questions such as how climate, land cover and land use change may affect snowmelt inputs to runoff generation. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.
Presentation at Kansas University GIS Days November 18, 2015
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.
Methods 1. Data collection using digital photographs and GIS
A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).
Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).
To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.
We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.
Facebook
TwitterPrior experience of GIS is variable, but a number of PGCE students and in-service teachers reported negative prior experiences with geospatial technology. Common complaints include a course focussed on data students found irrelevant, with learning exercises in the form of list-like instructions. The complexity of desktop GIS software is also often mentioned as off-putting.
Facebook
TwitterThis dataset displays the locations of permanently moored ships. NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats for purposes outside of navigation. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
Facebook
TwitterGeographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset.
Toolbox Use
License
Creative Commons-PDDC
Recommended Citation
Welty JL, Jeffries MI, Arkle RS, Pilliod DS, Kemp SK. 2021. GIS Clipping and Summarization Toolbox: U.S. Geological Survey Software Release. https://doi.org/10.5066/P99X8558
Facebook
TwitterThis dataset displays areas where mariners have to be made aware of circumstances influencing the safety of navigation. NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats for purposes outside of navigation. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
Facebook
TwitterThis dataset displays the linear boundaries of the solid portion of the Earth's surface, as opposed to sea, or other water (IHO Dictionary, S-32, 5th Edition , 2635). NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats for purposes outside of navigation. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
Facebook
TwitterThis dataset displays navigational aids distinctively marked to maximize their visibility in daylight. NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IMPORTANT: This is the source of the feature layer template in the LearnArcGIS Lesson: Prepare for SAR Incidents and for the MapSAR Solution. If this layer is cloned or copied, the owner of the items needs to update the item details to reflect this. Purpose: This is a feature layer template for use in missing person search operations. It is based on the MapSAR (ArcGIS Desktop) Data Model but simplified for use in web maps and apps. Please see MapSAR GitHub for more information on this project.Maps are at the core of any Search and Rescue (SAR) operation. Geographic information system (GIS) software allows rescue personnel to quickly generate maps that depict specific aspects of the operation and show what is happening on the ground over time. The maps and operations data can be shared over a network to supply an enhanced common operating picture throughout the Incident Command Post (ICP). A team of GIS and SAR professionals from Sierra Madre Search and Rescue Team, Esri, Sequoia and Kings Canyon National Park, Yosemite National Park, Grand Canyon National Park, and the Mountaineer Rescue Group came together to develop the tools and instructions to fit established SAR workflows. The goal is to meet the critical need to provide standards, documents, and training to the international SAR community and establish more widespread and effective integration of GIS into operations.See Comments below for updates to the data model.
Facebook
TwitterThis dataset displays the designated areas of water where a single vessel, sea plane, or other marine vessel may anchor. NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats for purposes outside of navigation. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Customer Journey Mapping Software Market size was valued to be USD 10.8 Billion in the year 2024 and it is expected to reach USD 53.6 Billion in 2032, at a CAGR of 13.8% over the forecast period of 2026 to 2032.
Customer Journey Mapping (CJM) software is a specialist application that helps organizations see and analyze the various stages of a customer's interaction with a firm. This program delivers a full and comprehensive perspective of the customer experience from the first contact to the final encounter allowing businesses to optimize their operations and increase overall customer satisfaction
. The essence of CJM software is its capacity to record and map out the customer journey in a visual manner such as a flowchart or diagram which aids in identifying pain points, understanding customer wants, and aligning business goals appropriately.
The primary application of customer journey mapping software is to improve customer experience (CX). Understanding the various stages and touchpoints of the customer journey allows firms to discover pain points and areas for improvement. For example, if a customer journey map shows that consumers regularly abandon their shopping carts at the payment stage, the company can investigate and fix the problem whether by streamlining the checkout process, providing clearer instructions, or offering more payment options.
CJMS will use advanced analytics to deliver more detailed insights into client behavior and preferences. The integration of big data and predictive analytics will enable organizations to anticipate client wants and identify possible problems before they arise. This proactive strategy will allow businesses to modify their services and interactions in real-time resulting in a smooth and rewarding consumer experience. Businesses will obtain a holistic picture of the consumer journey by analyzing massive volumes of data from multiple touchpoints revealing patterns and trends that can be used to guide strategic choices and optimize marketing efforts.
Enhanced Attention to Customer Experience (CX): The importance of delivering superior customer experiences for sustaining brand loyalty and boosting revenue is increasingly acknowledged by businesses. The ability of customer journey mapping software to enable businesses to pinpoint and refine customer interaction points throughout their journey is leading to enhanced CX and competitive differentiation.
Embracing Omnichannel Marketing: The engagement of modern consumers with brands through diverse platforms (including websites, social media, and mobile apps) is noted. The tracking of these multi-channel interactions and the understanding of customer behavior facilitated by customer journey mapping software assist in tailoring marketing efforts for better engagement.
The Requirement for Insights Based on Data: The necessity for insights driven by data in comprehending customer behavior and preferences is recognized by businesses. Through the aggregation and examination of customer information from various sources, customer journey mapping software offers critical insights for augmenting customer engagement and loyalty.
Regulatory Compliance Demands: Certain sectors are governed by regulations that enforce data privacy and security standards. Tools for meticulous tracking and management of customer information are provided by customer journey mapping software aiding businesses in meeting these regulatory requirements.
Increased Utilization Among SMBs: The adoption of customer journey mapping software previously more common among larger corporations, is now expanding to Small and Medium Businesses (SMBs). The appeal of this technology to a broader business spectrum is being enhanced by cloud-based solutions and subscription models.
Facebook
TwitterThis reference contains the imagery data used in the completion of the baseline vegetation inventory project for the NPS park unit. Orthophotos, raw imagery, and scanned aerial photos are common files held here. The digital orthophoto mosaic was examined onscreen in ArcGIS 9.0 (ESRI 1999–2004). Once the natural community types were established, GPS points of the plots were overlaid on the 2004 CIR aerial photos using ArcView GIS software. These data layers were utilized to map the natural communities using on-screen digitizing techniques. The minimum mapping unit used was 0.5 ha.
Facebook
TwitterThis dataset displays the locations of named or numbered places where a vessel can be moored at a wharf (IHO Dictionary, S-32, 5th Edition, 470). NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats for purposes outside of navigation. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
Facebook
TwitterThrough a grant from the US Fish and Wildlife Service on behalf of the Western Alaska Landscape Conservation Cooperative (WALCC), we have developed a comprehensive statewide inventory of current and historic continuous monitoring locations for stream and lake temperature. This project is one component of the LCC’s strategy to help partners understand and prepare for potential climate impacts to freshwater systems across Alaska. This project compiled a statewide catalog of monitoring locations using a common set of attributes. The inventory is fully accessible via an online mapping interface or it can be viewed and queried directly within commercial GIS software. In 2017, we began working with the National Center for Ecological Analysis and Synthesis (NCEAS) to link the AKOATS spatial metadata inventory to actual standardized stream temperature data.
Facebook
TwitterThis dataset displays the main navigable channel in rivers, harbours, and so on, for vessels of larger sizes. It is also the usual course followed by vessels entering or leaving harbours, called 'ship channel'. (International Maritime Dictionary, 2nd Edition). NOAA ENC Direct to GIS Internet Mapping Service is designed to allow for the visualization, querying and downloading of NOAA's Electronic Navigational Chart's (NOAA ENC) data in common Geographic Information System (GIS) formats for purposes outside of navigation. NOAA ENC Direct to GIS data is not intended for navigational purposes. This data is provided for use in GIS software packages for coastal planning and research.View Dataset on the Gateway
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The term Aids to Navigation (ATONS or AIDS) refers to a device outside of a vessel used to assist mariners in determining their position or safe course, or to warn them of obstructions. AIDS to navigation include lighthouses, lights, buoy, sound signals, landmarks, racons, radio beacons, LORAN, and omega. These include AIDS which are installed and maintained by the Coast Guard as well as privately installed and maintained aids (permit required). This does not include unofficial AIDS (illegal) such as stakes, PVC pipes, and such placed without permission.
This data set is not certified for navigation and is not intended to be used for navigation purposes.
Each USCG District Headquarters is responsible for updating their database on an 'as needed' basis. When existing AIDS are destroyed or relocated and new AIDS are installed the database is updated. Each AID is assigned an official 'light listing number'. The light list is a document listing the current status of ATONS and it is published and distributed on a regular basis. Interim changes to the light list are published in local Notices to Mariners which are the official means which navigators are supposed to keep their charts current. In addition, the USCG broadcasts Notices to Mariners on the marine band radio as soon as changes of the status of individual AIDS are reported. The light list number and local Notices to Mariners reports are suggested ways to keep the database current on a regular or even 'real time' basis. However, annual (or more frequent) updates of the entire dataset may be obtained from each USCG District Headquarters.
Geographic Information System (GIS) software is required to display the data in this NODC accession.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).