Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?
And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterThese charts provide a snapshot of the domestic and global market for rice, the primary staple for more than half the world's population. Excel files are available from the monthly Outlook reports.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
his project involves the creation of an interactive Excel dashboard for SwiftAuto Traders to analyze and visualize car sales data. The dashboard includes several visualizations to provide insights into car sales, profits, and performance across different models and manufacturers. The project makes use of various charts and slicers in Excel for the analysis.
Objective: The primary goal of this project is to showcase the ability to manipulate and visualize car sales data effectively using Excel. The dashboard aims to provide:
Profit and Sales Analysis for each dealer. Sales Performance across various car models and manufacturers. Resale Value Analysis comparing prices and resale values. Insights into Retention Percentage by car models. Files in this Project: Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx: The original dataset used to create the dashboard. dashboards.xlsx: The final Excel file that contains the complete dashboard with interactive charts and slicers. Key Visualizations: Average Price and Year Resale Value: A bar chart comparing the average price and resale value of various car models. Power Performance Factor: A column chart displaying the performance across different car models. Unit Sales by Model: A donut chart showcasing unit sales by car model. Retention Percentage: A pie chart illustrating customer retention by car model. Tools Used: Microsoft Excel for creating and organizing the visualizations and dashboard. Excel Slicers for interactive filtering. Charts: Bar charts, pie charts, column charts, and sunburst charts. How to Use: Download the Dataset: You can download the Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx file from Kaggle and follow the steps to create a similar dashboard in Excel. Open the Dashboard: The dashboards.xlsx file contains the final version of the dashboard. Simply open it in Excel and start exploring the interactive charts and slicers.
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set is perfect for practicing your analytical skills for Power BI, Tableau, Excel, or transform it into a CSV to practice SQL.
This use case mimics transactions for a fictional eCommerce website named EverMart Online. The 3 tables in this data set are all logically connected together with IDs.
My Power BI Use Case Explanation - Using Microsoft Power BI, I made dynamic data visualizations for revenue reporting and customer behavior reporting.
Revenue Reporting Visuals - Data Card Visual that dynamically shows Total Products Listed, Total Unique Customers, Total Transactions, and Total Revenue by Total Sales, Product Sales, or Categorical Sales. - Line Graph Visual that shows Total Revenue by Month of the entire year. This graph also changes to calculate Total Revenue by Month for the Total Sales by Product and Total Sales by Category if selected. - Bar Graph Visual showcasing Total Sales by Product. - Donut Chart Visual showcasing Total Sales by Category of Product.
Customer Behavior Reporting Visuals - Data Card Visual that dynamically shows Total Products Listed, Total Unique Customers, Total Transactions, and Total Revenue by Total or by continent selected on the map. - Interactive Map Visual showing key statistics for the continent selected. - The key statistics are presented on the tool tip when you select a continent, and the following statistics show for that continent: - Continent Name - Customer Total - Percentage of Products Sold - Percentage of Total Customers - Percentage of Total Transactions - Percentage of Total Revenue
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
About Datasets:
Domain : Finance Project: Variance Analysis Datasets: Budget vs Actuals Dataset Type: Excel Data Dataset Size: 482 records
KPI's: 1. Total Income 2. Total Expenses 3. Total Savings 4. Budget vs Actual Income 5. Actual Expenses Breakdown
Process: 1. Understanding the problem 2. Data Collection 3. Exploring and analyzing the data 4. Interpreting the results
This data contains dynamic dashboard, data validation, index match, SUMIFS, conditional formatting, if conditions, column chart, pie chart.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Graph Database Market Size 2025-2029
The graph database market size is valued to increase by USD 11.24 billion, at a CAGR of 29% from 2024 to 2029. Open knowledge network gaining popularity will drive the graph database market.
Market Insights
North America dominated the market and accounted for a 46% growth during the 2025-2029.
By End-user - Large enterprises segment was valued at USD 1.51 billion in 2023
By Type - RDF segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 670.01 million
Market Future Opportunities 2024: USD 11235.10 million
CAGR from 2024 to 2029 : 29%
Market Summary
The market is experiencing significant growth due to the increasing demand for low-latency query capabilities and the ability to handle complex, interconnected data. Graph databases are deployed in both on-premises data centers and cloud regions, providing flexibility for businesses with varying IT infrastructures. One real-world business scenario where graph databases excel is in supply chain optimization. In this context, graph databases can help identify the shortest path between suppliers and consumers, taking into account various factors such as inventory levels, transportation routes, and demand patterns. This can lead to increased operational efficiency and reduced costs.
However, the market faces challenges such as the lack of standardization and programming flexibility. Graph databases, while powerful, require specialized skills to implement and manage effectively. Additionally, the market is still evolving, with new players and technologies emerging regularly. Despite these challenges, the potential benefits of graph databases make them an attractive option for businesses seeking to gain a competitive edge through improved data management and analysis.
What will be the size of the Graph Database Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
The market is an evolving landscape, with businesses increasingly recognizing the value of graph technology for managing complex and interconnected data. According to recent research, the adoption of graph databases is projected to grow by over 20% annually, surpassing traditional relational databases in certain use cases. This trend is particularly significant for industries requiring advanced data analysis, such as finance, healthcare, and telecommunications. Compliance is a key decision area where graph databases offer a competitive edge. By modeling data as nodes and relationships, organizations can easily trace and analyze interconnected data, ensuring regulatory requirements are met. Moreover, graph databases enable real-time insights, which is crucial for budgeting and product strategy in today's fast-paced business environment.
Graph databases also provide superior performance compared to traditional databases, especially in handling complex queries involving relationships and connections. This translates to significant time and cost savings, making it an attractive option for businesses seeking to optimize their data management infrastructure. In conclusion, the market is experiencing robust growth, driven by its ability to handle complex data relationships and offer real-time insights. This trend is particularly relevant for industries dealing with regulatory compliance and seeking to optimize their data management infrastructure.
Unpacking the Graph Database Market Landscape
In today's data-driven business landscape, the adoption of graph databases has surged due to their unique capabilities in handling complex network data modeling. Compared to traditional relational databases, graph databases offer a significant improvement in query performance for intricate relationship queries, with some reports suggesting up to a 500% increase in query response time. Furthermore, graph databases enable efficient data lineage tracking, ensuring regulatory compliance and enhancing data version control. Graph databases, such as property graph models and RDF databases, facilitate node relationship management and real-time graph processing, making them indispensable for industries like finance, healthcare, and social media. With the rise of distributed and knowledge graph databases, organizations can achieve scalability and performance improvements, handling massive datasets with ease. Security, indexing, and deployment are essential aspects of graph databases, ensuring data integrity and availability. Query performance tuning and graph analytics libraries further enhance the value of graph databases in data integration and business intelligence applications. Ultimately, graph databases offer a powerful alternative to NoSQL databases, providing a more flexible and efficient approach to managing complex data relationships.
Key Market Drivers Fueling Growth
The growing popularity o
Facebook
TwitterThe data originates from Promusicae’s official website, which provides weekly and yearly charts for albums, singles, and additional music-related content categories. The paper associated to this sample is available here:
Sánchez-Olmos, C. (2025). Gender Inequality in Spain’s Official Music Charts: Neither Representation nor Success for Female Artists (2008–2020). Journalism and Media, 6(1), 10. https://doi.org/10.3390/journalmedia6010010
This dataset features the top 50 from 2008 to 2020, comprising 1300 recording units with an equal split between albums (650) and singles (650) (Figure 1). Promusicae represents Spanish record labels affiliated with the International Federation of the Phonographic Industry (IFPI) and is responsible for publishing these official charts. The analysis period started in 2008 when Promusicae published its first top 50 singles chart, which was later expanded to a top 100 format in 2015. Since Promusicae has published the singles chart since 2008, this year marks the beginning of the analysis period, ending in 2020.
Both charts were downloaded in Excel format from the Promusicae website. All albums and singles are coded to feature the following variables: artist, title, year of chart appearance, gender (soloist or band), position on the chart, and success achieved. The gender of the featured position is also coded in the single chart.
This code has its limitations. First, the use of binary gender coding fails to capture the diversity of sexual identities (de Boise, 2019). Furthermore, several methods for categorising mixed bands were identified based on the roles of men and women (including composers, singers, or instrumentalists). However, to facilitate discussion, we chose the categories proposed by Lafrance et al. (2011). Consequently, the final coding includes five distinct categories: male artists, male bands (entirely composed of men), female artists, female bands (consisting solely of women), and male–female groups (mixed duos, trios, or bands featuring both women and men).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains a collection of data about 454 value chains from 23 rural European areas of 16 countries. This data is obtained through a semi-automatic workflow that transforms raw textual data from an unstructured MS Excel sheet into semantic knowledge graphs.In particular, the repository contains:MS Excel sheet containing different value chains details provided by MOuntain Valorisation through INterconnectedness and Green growth (MOVING) European project;454 CSV files containing events, titles, entities and coordinates of narratives of each value chain, obtained by pre-processing the MS Excel sheet454 Web Ontology Language (OWL) files. This collection of files is the result of the semi-automatic workflow, and is organized as a semantic knowledge graph of narratives, where each narrative is a sub-graph explaining one among the 454 value chains and its territory aspects. The knowledge graph is based on the Narrative Ontology, an ontology developed by Institute of Information Science and Technologies (ISTI-CNR) as an extension of CIDOC CRM, FRBRoo, and OWL Time.Two CSV files that compile all the possible available information extracted from 454 Web Ontology Language (OWL) files.GeoPackage files with the geographic coordinates related to the narratives.The HTML files that show all the different SPARQL and GeoSPARQL queries.The HTML files that show the story maps about the 454 value chains.An image showing how the various components of the dataset interact with each other.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Analyzing Coffee Shop Sales: Excel Insights 📈
In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕
DATA CLEANING 🧹
• REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.
• FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.
• CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.
DATA MANIPULATION 🛠️
• UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.
• IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.
• APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.
• CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.
PIVOTING THE DATA 𝄜
• CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.
• FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.
VISUALIZATION 📊
• KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.
• SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.
• PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.
• TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.
*I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.
While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.
THANKS TO: WsCube Tech Mo Chen Alex Freberg
TOOLS USED: Microsoft Excel
Facebook
Twitter*** Fake News on Twitter ***
These 5 datasets are the results of an empirical study on the spreading process of newly fake news on Twitter. Particularly, we have focused on those fake news which have given rise to a truth spreading simultaneously against them. The story of each fake news is as follow:
1- FN1: A Muslim waitress refused to seat a church group at a restaurant, claiming "religious freedom" allowed her to do so.
2- FN2: Actor Denzel Washington said electing President Trump saved the U.S. from becoming an "Orwellian police state."
3- FN3: Joy Behar of "The View" sent a crass tweet about a fatal fire in Trump Tower.
4- FN4: The animated children's program 'VeggieTales' introduced a cannabis character in August 2018.
5- FN5: In September 2018, the University of Alabama football program ended its uniform contract with Nike, in response to Nike's endorsement deal with Colin Kaepernick.
The data collection has been done in two stages that each provided a new dataset: 1- attaining Dataset of Diffusion (DD) that includes information of fake news/truth tweets and retweets 2- Query of neighbors for spreaders of tweets that provides us with Dataset of Graph (DG).
DD
DD for each fake news story is an excel file, named FNx_DD where x is the number of fake news, and has the following structure:
The structure of excel files for each dataset is as follow:
Each row belongs to one captured tweet/retweet related to the rumor, and each column of the dataset presents a specific information about the tweet/retweet. These columns from left to right present the following information about the tweet/retweet:
User ID (user who has posted the current tweet/retweet)
The description sentence in the profile of the user who has published the tweet/retweet
The number of published tweet/retweet by the user at the time of posting the current tweet/retweet
Date and time of creation of the account by which the current tweet/retweet has been posted
Language of the tweet/retweet
Number of followers
Number of followings (friends)
Date and time of posting the current tweet/retweet
Number of like (favorite) the current tweet had been acquired before crawling it
Number of times the current tweet had been retweeted before crawling it
Is there any other tweet inside of the current tweet/retweet (for example this happens when the current tweet is a quote or reply or retweet)
The source (OS) of device by which the current tweet/retweet was posted
Tweet/Retweet ID
Retweet ID (if the post is a retweet then this feature gives the ID of the tweet that is retweeted by the current post)
Quote ID (if the post is a quote then this feature gives the ID of the tweet that is quoted by the current post)
Reply ID (if the post is a reply then this feature gives the ID of the tweet that is replied by the current post)
Frequency of tweet occurrences which means the number of times the current tweet is repeated in the dataset (for example the number of times that a tweet exists in the dataset in the form of retweet posted by others)
State of the tweet which can be one of the following forms (achieved by an agreement between the annotators):
r : The tweet/retweet is a fake news post
a : The tweet/retweet is a truth post
q : The tweet/retweet is a question about the fake news, however neither confirm nor deny it
n : The tweet/retweet is not related to the fake news (even though it contains the queries related to the rumor, but does not refer to the given fake news)
DG
DG for each fake news contains two files:
A file in graph format (.graph) which includes the information of graph such as who is linked to whom. (This file named FNx_DG.graph, where x is the number of fake news)
A file in Jsonl format (.jsonl) which includes the real user IDs of nodes in the graph file. (This file named FNx_Labels.jsonl, where x is the number of fake news)
Because in the graph file, the label of each node is the number of its entrance in the graph. For example if node with user ID 12345637 be the first node which has been entered into the graph file then its label in the graph is 0 and its real ID (12345637) would be at the row number 1 (because the row number 0 belongs to column labels) in the jsonl file and so on other node IDs would be at the next rows of the file (each row corresponds to 1 user id). Therefore, if we want to know for example what the user id of node 200 (labeled 200 in the graph) is, then in jsonl file we should look at row number 202.
The user IDs of spreaders in DG (those who have had a post in DD) would be available in DD to get extra information about them and their tweet/retweet. The other user IDs in DG are the neighbors of these spreaders and might not exist in DD.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains in-air hand-written numbers and shapes data used in the paper:B. Alwaely and C. Abhayaratne, "Graph Spectral Domain Feature Learning With Application to in-Air Hand-Drawn Number and Shape Recognition," in IEEE Access, vol. 7, pp. 159661-159673, 2019, doi: 10.1109/ACCESS.2019.2950643.The dataset contains the following:-Readme.txt- InAirNumberShapeDataset.zip containing-Number Folder (With 2 sub folders for Matlab and Excel)-Shapes Folder (With 2 sub folders for Matlab and Excel)The datasets include the in-air drawn number and shape hand movement path captured by a Kinect sensor. The number sub dataset includes 500 instances per each number 0 to 9, resulting in a total of 5000 number data instances. Similarly, the shape sub dataset also includes 500 instances per each shape for 10 different arbitrary 2D shapes, resulting in a total of 5000 shape instances. The dataset provides X, Y, Z coordinates of the hand movement path data in Matlab (M-file) and Excel formats and their corresponding labels.This dataset creation has received The University of Sheffield ethics approval under application #023005 granted on 19/10/2018.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
Twitter
According to our latest research, the global Graph Database Vector Search market size reached USD 2.35 billion in 2024, exhibiting robust growth driven by the increasing demand for advanced data analytics and AI-powered search capabilities. The market is expected to expand at a CAGR of 21.7% during the forecast period, propelling the market size to an anticipated USD 16.8 billion by 2033. This remarkable growth trajectory is primarily fueled by the proliferation of big data, the widespread adoption of AI and machine learning, and the growing necessity for real-time, context-aware search solutions across diverse industry verticals.
One of the primary growth factors for the Graph Database Vector Search market is the exponential increase in unstructured and semi-structured data generated by enterprises worldwide. Organizations are increasingly seeking efficient ways to extract meaningful insights from complex datasets, and graph databases paired with vector search capabilities are emerging as the preferred solution. These technologies enable organizations to model intricate relationships and perform semantic searches with unprecedented speed and accuracy. Additionally, the integration of AI and machine learning algorithms with graph databases is enhancing their ability to deliver context-rich, relevant results, thereby improving decision-making processes and business outcomes.
Another significant driver is the rising adoption of recommendation systems and fraud detection solutions across various sectors, particularly in BFSI, retail, and e-commerce. Graph database vector search platforms excel at identifying patterns, anomalies, and connections that traditional relational databases often miss. This capability is crucial for detecting fraudulent activities, building sophisticated recommendation engines, and powering knowledge graphs that underpin intelligent digital experiences. The growing need for personalized customer engagement and proactive risk mitigation is prompting organizations to invest heavily in these advanced technologies, further accelerating market growth.
Furthermore, the shift towards cloud-based deployment models is catalyzing the adoption of graph database vector search solutions. Cloud platforms offer scalability, flexibility, and cost-effectiveness, making it easier for organizations of all sizes to implement and scale graph-powered applications. The availability of managed services and API-driven architectures is reducing the complexity associated with deployment and maintenance, enabling faster time-to-value. As more enterprises migrate their data infrastructure to the cloud, the demand for cloud-native graph database vector search solutions is expected to surge, driving sustained market expansion.
Geographically, North America currently dominates the Graph Database Vector Search market, owing to its advanced IT infrastructure, high adoption rate of AI-driven technologies, and presence of leading technology vendors. However, rapid digital transformation initiatives across Europe and the Asia Pacific are positioning these regions as high-growth markets. The increasing focus on data-driven decision-making, coupled with supportive regulatory frameworks and government investments in AI and big data analytics, is expected to fuel robust growth in these regions over the forecast period.
The Component segment of the Graph Database Vector Search market is broadly categorized into software and services. The software sub-segment commands the largest share, driven by the relentless innovation in graph database technologies and the integration of advanced vector search functionalities. Organizations are increasingly deploying graph database software to manage complex data relationships, power semantic search, and enhance the performance of AI and machine learning applications. The software market is characterized by the proliferation of both open-source and proprietary solutions, with vendors
Facebook
TwitterExcel file that contains data underlying all graphs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.