Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Description: This dataset contains historical economic data spanning from 1871 to 2024, used in Jaouad Karfali’s research on Economic Cycle Analysis with Numerical Time Cycles. The study aims to improve economic forecasting accuracy through the 9-year cycle model, which demonstrates superior predictive capabilities compared to traditional economic indicators.
Dataset Contents: The dataset includes a comprehensive range of economic indicators used in the research, such as:
USGDP_1871-2024.csv – U.S. Gross Domestic Product (GDP) data. USCPI_cleaned.csv – U.S. Consumer Price Index (CPI), cleaned and processed. USWAGE_1871-2024.csv – U.S. average wages data. EXCHANGEGLOBAL_cleaned.csv – Global exchange rates for the U.S. dollar. EXCHANGEPOUND_cleaned.csv – U.S. dollar to British pound exchange rates. INTERESTRATE_1871-2024.csv – U.S. interest rate data. UNRATE.csv – U.S. unemployment rate statistics. POPTOTUSA647NWDB.csv – U.S. total population data. Significance of the Data: This dataset serves as a foundation for a robust economic analysis of the U.S. economy over multiple decades. It was instrumental in testing the 9-year economic cycle model, which demonstrated an 85% accuracy rate in economic forecasting when compared to traditional models such as ARIMA and VAR.
Applications:
Economic Forecasting: Predicts a 1.5% decline in GDP in 2025, followed by a gradual recovery between 2026-2034. Economic Stability Analysis: Used for comparing forecasts with estimates from institutions like the IMF and World Bank. Academic and Institutional Research: Supports studies in economic cycles and long-term forecasting. Source & Further Information: For more details on the methodology and research findings, refer to the full paper published on SSRN:
https://ssrn.com/author=7429208 https://orcid.org/0009-0002-9626-7289
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Global Population Growth Dataset provides a comprehensive record of population trends across various countries over multiple decades. It includes detailed information such as the country name, ISO3 country code, year-wise population data, population growth, and growth rate. This dataset is valuable for researchers, demographers, policymakers, and data analysts interested in studying population dynamics, demographic trends, and economic development.
Key features of the dataset:
✅ Covers multiple countries and regions worldwide
✅ Includes historical and recent population data
✅ Provides year-wise population growth and growth rate (%)
✅ Categorizes data by country and decade for better trend analysis
This dataset serves as a crucial resource for analyzing global population trends, understanding demographic shifts, and supporting socio-economic research and policy-making.
The dataset consists of structured records related to country-wise population data, compiled from official sources. Each file contains information on yearly population figures, growth trends, and country-specific data. The structured format makes it useful for researchers, economists, and data scientists studying demographic patterns and changes. The file type is CSV.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides estimates of GDP by economic activity for Q2 2024 at current prices (in million QAR). It includes comparisons with Q1 2024 and Q2 2023, showing both quarterly and annual percentage changes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book series is Economy and environment. It features 9 columns including author, publication date, language, and book publisher.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
About the Project The project explores alternative methods of measuring economic diversification and investigating its associated impacts on the Saudi Arabian economy and other GCC countries. By utilizing a financial portfolio framework reconciled with economic growth theory, the economy is viewed as a portfolio of economic sectors, each contributing to the overall output growth. Results demonstrated that diversification policies have been effective, as the economy moves towards higher growth with lower instability. Key Points Evidence confirms that there is a positive correlation between the economic growth rate and its volatility/risk in the Gulf Cooperation Council (GCC) region. In other words, there is a trade-off between the benefits of oil and gas activity and the volatility resulting from unpredictable commodity price swings in such resource dependent economies. Our analysis uses a financial portfolio framework approach (and more specifically an efficient frontier analysis), treating economic sectors as individual investments. We calculate a relative risk measure termed the ‘beta coefficient’ and assemble a portfolio of sectors with varying weights to find the efficient frontier. If the beta of the portfolio representing the economy is above global average, the economy will generally grow faster than the global average but with greater volatility – the upturns will be higher and the downturns deeper. We aim to shed light on diversification policy from this novel, if not yet widely accepted, perspective. The GCC economies exhibit ‘high beta,’ particularly Qatar. Saudi Arabia sits in the middle of the group, but above the global average, while Oman has the lowest coefficient of the group. Saudi Arabia’s National Transformation Plan to 2020 and economic Vision 2030 envisage an economy that is still invested in oil and gas activity at 45 percent of total output. While diversification policies in these plans promote economic growth, it still leaves the economy exposed to the volatility of energy markets. In comparison, the optimal mix of economic sectors could increase the growth rate by more than 1 percent annually and nearly halve the expected volatility (to less than 60 percent of growth rate). Saudi Arabia’s historical economic policies were effective in achieving some diversification. However, their benefits could be increased by policies that balance productive efficiency with diversification of economic activity. The difference between policy-optimized portfolio and non-constrained optimization can be used to estimate the size of the fiscal stabilization fund needed to protect the economy from stop/go risks to diversification objectives.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Economy by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Economy. The dataset can be utilized to understand the population distribution of Economy by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Economy. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Economy.
Key observations
Largest age group (population): Male # 65-69 years (412) | Female # 60-64 years (490). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Economy Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 1 row and is filtered where the books is Political economy goes to the movies. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
The 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. This shapefile represents the County Economic Census for Luna County stored in the 2006 TIGER Second Edition dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 21 rows and is filtered where the book is Business economics. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is The political economy of defense spending around the world. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Economics of climate change : the contributions of forestry projects. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book series. It has 2 rows and is filtered where the books is A global redesign? : shaping the circular economy. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This report summarises key economic factors affecting the success of recent resource and environmental management projects in the Pacific.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Reports by Asian Development Bank (ADB)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita In the Euro Area was last recorded at 38145.12 US dollars in 2024. The GDP per Capita In the Euro Area is equivalent to 302 percent of the world's average. This dataset provides the latest reported value for - Euro Area GDP per capita - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for COMPETITIVENESS INDEX reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Klickitat County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Klickitat County median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Bennington: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bennington median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Garner: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Garner median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Flanagan: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Flanagan median household income by age. You can refer the same here
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Description: This dataset contains historical economic data spanning from 1871 to 2024, used in Jaouad Karfali’s research on Economic Cycle Analysis with Numerical Time Cycles. The study aims to improve economic forecasting accuracy through the 9-year cycle model, which demonstrates superior predictive capabilities compared to traditional economic indicators.
Dataset Contents: The dataset includes a comprehensive range of economic indicators used in the research, such as:
USGDP_1871-2024.csv – U.S. Gross Domestic Product (GDP) data. USCPI_cleaned.csv – U.S. Consumer Price Index (CPI), cleaned and processed. USWAGE_1871-2024.csv – U.S. average wages data. EXCHANGEGLOBAL_cleaned.csv – Global exchange rates for the U.S. dollar. EXCHANGEPOUND_cleaned.csv – U.S. dollar to British pound exchange rates. INTERESTRATE_1871-2024.csv – U.S. interest rate data. UNRATE.csv – U.S. unemployment rate statistics. POPTOTUSA647NWDB.csv – U.S. total population data. Significance of the Data: This dataset serves as a foundation for a robust economic analysis of the U.S. economy over multiple decades. It was instrumental in testing the 9-year economic cycle model, which demonstrated an 85% accuracy rate in economic forecasting when compared to traditional models such as ARIMA and VAR.
Applications:
Economic Forecasting: Predicts a 1.5% decline in GDP in 2025, followed by a gradual recovery between 2026-2034. Economic Stability Analysis: Used for comparing forecasts with estimates from institutions like the IMF and World Bank. Academic and Institutional Research: Supports studies in economic cycles and long-term forecasting. Source & Further Information: For more details on the methodology and research findings, refer to the full paper published on SSRN:
https://ssrn.com/author=7429208 https://orcid.org/0009-0002-9626-7289