100+ datasets found
  1. I

    Ireland Cost of living - data, chart | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2021). Ireland Cost of living - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Ireland/cost_of_living_wb/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    May 21, 2021
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2017 - Dec 31, 2021
    Area covered
    Ireland
    Description

    Ireland: Cost of living index, world average = 100: The latest value from 2021 is 175.68 index points, an increase from 157.19 index points in 2017. In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Ireland from 2017 to 2021 is 166.44 index points. The minimum value, 157.19 index points, was reached in 2017 while the maximum of 175.68 index points was recorded in 2021.

  2. a

    Location Affordability Index

    • hub.arcgis.com
    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • +6more
    Updated May 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Location Affordability Index [Dataset]. https://hub.arcgis.com/maps/447a461f048845979f30a2478b9e65bb
    Explore at:
    Dataset updated
    May 10, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    There is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**

    Title: Location Affordability Index - NMCDC Copy

    Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.

    Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.

    Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC

    Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.

    Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb

    UID: 73

    Data Requested: Family income spent on basic need

    Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id

    Date Acquired: Map copied on May 10, 2022

    Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6

    Tags: PENDING

  3. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to 84.8 - well below the national benchmark of 100. Nevada - which had an index value of 100.1 - was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately 427,000 U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than 200,000 U.S. dollars. That makes living costs in these states significantly lower than in states such as Hawaii and California, where housing is much more expensive. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded 500 U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  4. G

    Cost of living in Europe | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2021). Cost of living in Europe | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/cost_of_living_wb/Europe/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    May 28, 2021
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2017 - Dec 31, 2021
    Area covered
    World, Europe
    Description

    The average for 2021 based on 41 countries was 107.05 index points. The highest value was in Switzerland: 211.98 index points and the lowest value was in Belarus: 40.99 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.

  5. T

    PERSONAL INCOME by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PERSONAL INCOME by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/personal-income
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for PERSONAL INCOME reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. T

    INCOME SHARE HELD BY HIGHEST 10PERCENT WB DATA.HTML. by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, INCOME SHARE HELD BY HIGHEST 10PERCENT WB DATA.HTML. by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/income-share-held-by-highest-10percent-wb-data.html.?continent=america
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for INCOME SHARE HELD BY HIGHEST 10PERCENT WB DATA.HTML. reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. N

    Country Club Hills, IL Median Household Income Trends (2010-2023, in 2023...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Country Club Hills, IL Median Household Income Trends (2010-2023, in 2023 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/insights/country-club-hills-il-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Illinois, Country Club Hills
    Variables measured
    Median Household Income, Median Household Income Year on Year Change, Median Household Income Year on Year Percent Change
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It presents the median household income from the years 2010 to 2023 following an initial analysis and categorization of the census data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset illustrates the median household income in Country Club Hills, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.

    Key observations:

    From 2010 to 2023, the median household income for Country Club Hills decreased by $6,203 (7.41%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.

    Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 8 years and declined for 5 years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Years for which data is available:

    • 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 0223

    Variables / Data Columns

    • Year: This column presents the data year from 2010 to 2023
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific year
    • YOY Change($): Change in median household income between the current and the previous year, in 2023 inflation-adjusted dollars
    • YOY Change(%): Percent change in median household income between current and the previous year

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Club Hills median household income. You can refer the same here

  8. n

    Luxembourg Income Study

    • neuinfo.org
    • rrid.site
    • +2more
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Luxembourg Income Study [Dataset]. http://identifiers.org/RRID:SCR_008732/resolver?q=&i=rrid
    Explore at:
    Dataset updated
    Jan 21, 2025
    Description

    A cross-national data archive located in Luxembourg that contains two primary databases: the Luxembourg Income Study Database (LIS Database) includes income microdata from a large number of countries at multiple points in time. The newer Luxembourg Wealth Study Database(LWS Database) includes wealth microdata from a smaller selection of countries. Both databases include labor market and demographic data as well. Our mission is to enable, facilitate, promote, and conduct cross-national comparative research on socio-economic outcomes and on the institutional factors that shape those outcomes. Since its beginning in 1983, the LIS has grown into a cooperative research project with a membership that includes countries in Europe, North America, and Australia. The database now contains information for more than 30 countries with datasets that span up to three decades. The LIS databank has a total of over 140 datasets covering the period 1968 to 2005. The primary objectives of the LIS are as follows: * Test the feasibility for creating a database containing social and economic data collected in household surveys from different countries; * Provide a method which allows researchers to use the data under restrictions required by the countries providing the data; * Create a system that allows research requests to be received from and returned to users at remote locations; and * Promote comparative research on the social and economic status of various populations and subgroups in different countries. Data Availability: The dataset is accessed globally via electronic mail networks. Extensive documentation concerning technical aspects of the survey data, variables list, and the social institutions of income provision in member countries are also available to users through the project Website. * Dates of Study: 1968-present * Study Features: International * Sample Size: 30+ Countries Link: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00150

  9. Cost of living index in India 2024, by city

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cost of living index in India 2024, by city [Dataset]. https://www.statista.com/statistics/1399330/india-cost-of-living-index-by-city/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    As of September 2024, Mumbai had the highest cost of living among other cities in the country, with an index value of 26.5. Gurgaon, a satellite city of Delhi and part of the National Capital Region (NCR) followed it with an index value of 25.1.  What is cost of living? The cost of living varies depending on geographical regions and factors that affect the cost of living in an area include housing, food, utilities, clothing, childcare, and fuel among others. The cost of living is calculated based on different measures such as the consumer price index (CPI), living cost indexes, and wage price index. CPI refers to the change in the value of consumer goods and services. The wage price index, on the other hand, measures the change in labor services prices due to market pressures. Lastly, the living cost indexes calculate the impact of changing costs on different households. The relationship between wages and costs determines affordability and shifts in the cost of living. Mumbai tops the list Mumbai usually tops the list of most expensive cities in India. As the financial and entertainment hub of the country, Mumbai offers wide opportunities and attracts talent from all over the country. It is the second-largest city in India and has one of the most expensive real estates in the world.

  10. Global Data Regulation Diagnostic Survey Dataset 2021 - Afghanistan, Angola,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Data Regulation Diagnostic Survey Dataset 2021 - Afghanistan, Angola, Argentina...and 77 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/3866
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2020
    Area covered
    Angola, Afghanistan, Argentina...and 77 more
    Description

    Abstract

    The Global Data Regulation Diagnostic provides a comprehensive assessment of the quality of the data governance environment. Diagnostic results show that countries have put in greater effort in adopting enabler regulatory practices than in safeguard regulatory practices. However, for public intent data, enablers for private intent data, safeguards for personal and nonpersonal data, cybersecurity and cybercrime, as well as cross-border data flows. Across all these dimensions, no income group demonstrates advanced regulatory frameworks across all dimensions, indicating significant room for the regulatory development of both enablers and safeguards remains at an intermediate stage: 47 percent of enabler good practices and 41 percent of good safeguard practices are adopted across countries. Under the enabler and safeguard pillars, the diagnostic covers dimensions of e-commerce/e-transactions, enablers further improvement on data governance environment.

    The Global Data Regulation Diagnostic is the first comprehensive assessment of laws and regulations on data governance. It covers enabler and safeguard regulatory practices in 80 countries providing indicators to assess and compare their performance. This Global Data Regulation Diagnostic develops objective and standardized indicators to measure the regulatory environment for the data economy across countries. The indicators aim to serve as a diagnostic tool so countries can assess and compare their performance vis-á-vis other countries. Understanding the gap with global regulatory good practices is a necessary first step for governments when identifying and prioritizing reforms.

    Geographic coverage

    80 countries

    Analysis unit

    Country

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The diagnostic is based on a detailed assessment of domestic laws, regulations, and administrative requirements in 80 countries selected to ensure a balanced coverage across income groups, regions, and different levels of digital technology development. Data are further verified through a detailed desk research of legal texts, reflecting the regulatory status of each country as of June 1, 2020.

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    The questionnaire comprises 37 questions designed to determine if a country has adopted good regulatory practice on data governance. The responses are then scored and assigned a normative interpretation. Related questions fall into seven clusters so that when the scores are averaged, each cluster provides an overall sense of how it performs in its corresponding regulatory and legal dimensions. These seven dimensions are: (1) E-commerce/e-transaction; (2) Enablers for public intent data; (3) Enablers for private intent data; (4) Safeguards for personal data; (5) Safeguards for nonpersonal data; (6) Cybersecurity and cybercrime; (7) Cross-border data transfers.

    Response rate

    100%

  11. C

    Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of...

    • ceicdata.com
    Updated Dec 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate [Dataset]. https://www.ceicdata.com/en/colombia/social-poverty-and-inequality/co-survey-mean-consumption-or-income-per-capita-bottom-40-of-population-annualized-average-growth-rate
    Explore at:
    Dataset updated
    Dec 15, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2021
    Area covered
    Colombia
    Description

    Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.590 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -2.590 % in 2021 and a record low of -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.

  12. Gini index worldwide 2024, by country

    • statista.com
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini index worldwide 2024, by country [Dataset]. https://www.statista.com/forecasts/1171540/gini-index-by-country
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2024 - Dec 31, 2024
    Area covered
    Albania
    Description

    Comparing the 130 selected regions regarding the gini index , South Africa is leading the ranking (0.63 points) and is followed by Namibia with 0.58 points. At the other end of the spectrum is Slovakia with 0.23 points, indicating a difference of 0.4 points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from 0 (=total equality of incomes) to one (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).

  13. Average residential real estate square meter prices in Europe 2023, by...

    • statista.com
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average residential real estate square meter prices in Europe 2023, by country [Dataset]. https://www.statista.com/statistics/722905/average-residential-square-meter-prices-in-eu-28-per-country/
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Europe
    Description

    The average transaction price of new housing in Europe was the highest in Norway, whereas existing homes were the most expensive in Austria. Since there is no central body that collects and tracks transaction activity or house prices across the whole continent or the European Union, not all countries are included. To compile the ranking, the source weighed the transaction prices of residential properties in the most important cities in each country based on data from their national offices. For example, in Germany, the cities included were Munich, Hamburg, Frankfurt, and Berlin. House prices have been soaring, with Sweden topping the ranking Considering the RHPI of houses in Europe (the price index in real terms, which measures price changes of single-family properties adjusted for the impact of inflation), however, the picture changes. Sweden, Luxembourg and Norway top this ranking, meaning residential property prices have surged the most in these countries. Real values were calculated using the so-called Personal Consumption Expenditure Deflator (PCE), This PCE uses both consumer prices as well as consumer expenditures, like medical and health care expenses paid by employers. It is meant to show how expensive housing is compared to the way of living in a country. Home ownership highest in Eastern Europe The home ownership rate in Europe varied from country to country. In 2020, roughly half of all homes in Germany were owner-occupied whereas home ownership was at nearly 97 percent in Romania or around 90 percent in Slovakia and Lithuania. These numbers were considerably higher than in France or Italy, where homeowners made up 65 percent and 72 percent of their respective populations.For more information on the topic of property in Europe, visit the following pages as a starting point for your research: real estate investments in Europe and residential real estate in Europe.

  14. a

    Gross National Income by country, 2014

    • communities-amerigeoss.opendata.arcgis.com
    • amerigeo.org
    • +3more
    Updated Feb 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maps.com (2016). Gross National Income by country, 2014 [Dataset]. https://communities-amerigeoss.opendata.arcgis.com/datasets/beyondmaps::gross-national-income-by-country-2014
    Explore at:
    Dataset updated
    Feb 10, 2016
    Dataset provided by
    Maps.com
    Area covered
    Description

    Gross National Income (GNI) per Capita based on purchasing power parity (current international $) by country for 2014. This is a filtered layer based on the "Gross National Income by country, 1990-2010 time series" layer. GNI based on purchasing power parity rates allows for easier comparison of countries by taking into account price differences between countries. GNI is the sum of value added by all resident producers plus any product taxes (less subsidies) not included in the valuation of output plus net receipts of primary income (compensation of employees and property income) from abroad. Data are in current international dollars based on the 2011 ICP round.Data Sources: World Bank, International Comparison Program database; Country shapes from Natural Earth 50M scale data.

  15. H

    Data from: The Standardized World Income Inequality Database, Versions 8-9

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frederick Solt (2024). The Standardized World Income Inequality Database, Versions 8-9 [Dataset]. http://doi.org/10.7910/DVN/LM4OWF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Frederick Solt
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    1960 - 2023
    Dataset funded by
    NSF
    Description

    Cross-national research on the causes and consequences of income inequality has been hindered by the limitations of the existing inequality datasets: greater coverage across countries and over time has been available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to meet the needs of those engaged in broadly cross-national research by maximizing the comparability of income inequality data while maintaining the widest possible coverage across countries and over time. The SWIID’s income inequality estimates are based on thousands of reported Gini indices from hundreds of published sources, including the OECD Income Distribution Database, the Socio-Economic Database for Latin America and the Caribbean generated by CEDLAS and the World Bank, Eurostat, the World Bank’s PovcalNet, the UN Economic Commission for Latin America and the Caribbean, national statistical offices around the world, and academic studies while minimizing reliance on problematic assumptions by using as much information as possible from proximate years within the same country. The data collected and harmonized by the Luxembourg Income Study is employed as the standard. The SWIID currently incorporates comparable Gini indices of disposable and market income inequality for 199 countries for as many years as possible from 1960 to the present; it also includes information on absolute and relative redistribution.

  16. G

    Germany DE: Income Share Held by Second 20%

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Germany DE: Income Share Held by Second 20% [Dataset]. https://www.ceicdata.com/en/germany/social-poverty-and-inequality/de-income-share-held-by-second-20
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    Germany
    Description

    Germany DE: Income Share Held by Second 20% data was reported at 12.800 % in 2020. This records a decrease from the previous number of 13.100 % for 2019. Germany DE: Income Share Held by Second 20% data is updated yearly, averaging 13.100 % from Dec 1991 (Median) to 2020, with 30 observations. The data reached an all-time high of 13.700 % in 1996 and a record low of 12.800 % in 2020. Germany DE: Income Share Held by Second 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Social: Poverty and Inequality. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  17. U

    United States US: Income Share Held by Fourth 20%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Fourth 20% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-fourth-20
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Fourth 20% data was reported at 22.600 % in 2016. This records a decrease from the previous number of 22.700 % for 2013. United States US: Income Share Held by Fourth 20% data is updated yearly, averaging 22.700 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 23.600 % in 1986 and a record low of 22.300 % in 2000. United States US: Income Share Held by Fourth 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  18. E

    El Salvador SV: Income Share Held by Highest 20%

    • ceicdata.com
    Updated Mar 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). El Salvador SV: Income Share Held by Highest 20% [Dataset]. https://www.ceicdata.com/en/el-salvador/poverty/sv-income-share-held-by-highest-20
    Explore at:
    Dataset updated
    Mar 20, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    El Salvador
    Description

    El Salvador SV: Income Share Held by Highest 20% data was reported at 46.400 % in 2016. This records a decrease from the previous number of 47.200 % for 2015. El Salvador SV: Income Share Held by Highest 20% data is updated yearly, averaging 52.400 % from Dec 1991 (Median) to 2016, with 22 observations. The data reached an all-time high of 57.600 % in 1991 and a record low of 46.400 % in 2016. El Salvador SV: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s El Salvador – Table SV.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  19. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Hill...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Hill Country Village, TX Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/hill-country-village-tx-median-household-income-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hill Country Village, Texas
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Hill Country Village: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 0 households where the householder is under 25 years old, 36(12.41%) households with a householder aged between 25 and 44 years, 120(41.38%) households with a householder aged between 45 and 64 years, and 134(46.21%) households where the householder is over 65 years old.
    • The age group of 25 to 44 years exhibits the highest median household income, while the largest number of households falls within the 65 years and over bracket. This distribution hints at economic disparities within the city of Hill Country Village, showcasing varying income levels among different age demographics.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hill Country Village median household income by age. You can refer the same here

  20. f

    Dataset for the "Comparison of Clinical Characteristics and Outcomes between...

    • figshare.com
    docx
    Updated Feb 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diptesh Aryal; Suraj Bhattarai; Sushila Paudel; Subekshya Luitel; Roshni Shakya; Riju Dhakal; Surendra Bhusal; Hem Raj Paneru; Kaveri Thapa; Srijana Kayastha; Karuna Thapa; Sabita Shrestha; Renu Younjan; Sabin Koirala; Sushil Khanal; Pradip Tiwari; Subhash Prasad Acharya (2024). Dataset for the "Comparison of Clinical Characteristics and Outcomes between COVID-19 Survivors and Non Survivors: A Retrospective Observational Study" [Dataset]. http://doi.org/10.6084/m9.figshare.25040621.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    figshare
    Authors
    Diptesh Aryal; Suraj Bhattarai; Sushila Paudel; Subekshya Luitel; Roshni Shakya; Riju Dhakal; Surendra Bhusal; Hem Raj Paneru; Kaveri Thapa; Srijana Kayastha; Karuna Thapa; Sabita Shrestha; Renu Younjan; Sabin Koirala; Sushil Khanal; Pradip Tiwari; Subhash Prasad Acharya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The aim of this study was to compare the clinical characteristics and outcomes of COVID-19 survivors and non-survivors who were transferred from general wards to critical care units in four tertiary hospitals in Nepal. The study employed a retrospective observational design, utilizing data from the ICU registry managed by the Nepal Intensive Care Research Foundation (NICRF) which utilized Case Report Forms that contained comprehensive information on patients admitted to the ICU. Demographic data, clinical characteristics, laboratory parameters, treatments, and outcomes were analyzed. The statistical analysis involved the use of the Mann-Whitney U test for continuous variables and Pearson's chi-squared test for categorical variables. Fisher's exact test was applied when expected frequencies were less than 5. IBM Statistical Package for the Social Sciences (SPSS) software, version 25, was used for analysis. Ethical clearance for the study was obtained from the Nepal Health Research Council on January 23, 2023 (Ref No. 1698/2022). The study received exemption from the review of secondary data, as the information was de-identified and did not involve direct patient participation. The ethical approval ensured compliance with ethical standards and protected the rights and confidentiality of the study participants.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Globalen LLC (2021). Ireland Cost of living - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Ireland/cost_of_living_wb/

Ireland Cost of living - data, chart | TheGlobalEconomy.com

Explore at:
csv, xml, excelAvailable download formats
Dataset updated
May 21, 2021
Dataset authored and provided by
Globalen LLC
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 31, 2017 - Dec 31, 2021
Area covered
Ireland
Description

Ireland: Cost of living index, world average = 100: The latest value from 2021 is 175.68 index points, an increase from 157.19 index points in 2017. In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Ireland from 2017 to 2021 is 166.44 index points. The minimum value, 157.19 index points, was reached in 2017 while the maximum of 175.68 index points was recorded in 2021.

Search
Clear search
Close search
Google apps
Main menu