Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ireland: Cost of living index, world average = 100: The latest value from 2021 is 175.68 index points, an increase from 157.19 index points in 2017. In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Ireland from 2017 to 2021 is 166.44 index points. The minimum value, 157.19 index points, was reached in 2017 while the maximum of 175.68 index points was recorded in 2021.
There is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**
Title: Location Affordability Index - NMCDC Copy
Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.
Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.
Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC
Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.
Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb
UID: 73
Data Requested: Family income spent on basic need
Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id
Date Acquired: Map copied on May 10, 2022
Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6
Tags: PENDING
West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to 84.8 - well below the national benchmark of 100. Nevada - which had an index value of 100.1 - was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately 427,000 U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than 200,000 U.S. dollars. That makes living costs in these states significantly lower than in states such as Hawaii and California, where housing is much more expensive. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded 500 U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 41 countries was 107.05 index points. The highest value was in Switzerland: 211.98 index points and the lowest value was in Belarus: 40.99 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for PERSONAL INCOME reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for INCOME SHARE HELD BY HIGHEST 10PERCENT WB DATA.HTML. reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Country Club Hills, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Country Club Hills decreased by $6,203 (7.41%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 8 years and declined for 5 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Country Club Hills median household income. You can refer the same here
A cross-national data archive located in Luxembourg that contains two primary databases: the Luxembourg Income Study Database (LIS Database) includes income microdata from a large number of countries at multiple points in time. The newer Luxembourg Wealth Study Database(LWS Database) includes wealth microdata from a smaller selection of countries. Both databases include labor market and demographic data as well. Our mission is to enable, facilitate, promote, and conduct cross-national comparative research on socio-economic outcomes and on the institutional factors that shape those outcomes. Since its beginning in 1983, the LIS has grown into a cooperative research project with a membership that includes countries in Europe, North America, and Australia. The database now contains information for more than 30 countries with datasets that span up to three decades. The LIS databank has a total of over 140 datasets covering the period 1968 to 2005. The primary objectives of the LIS are as follows: * Test the feasibility for creating a database containing social and economic data collected in household surveys from different countries; * Provide a method which allows researchers to use the data under restrictions required by the countries providing the data; * Create a system that allows research requests to be received from and returned to users at remote locations; and * Promote comparative research on the social and economic status of various populations and subgroups in different countries. Data Availability: The dataset is accessed globally via electronic mail networks. Extensive documentation concerning technical aspects of the survey data, variables list, and the social institutions of income provision in member countries are also available to users through the project Website. * Dates of Study: 1968-present * Study Features: International * Sample Size: 30+ Countries Link: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00150
As of September 2024, Mumbai had the highest cost of living among other cities in the country, with an index value of 26.5. Gurgaon, a satellite city of Delhi and part of the National Capital Region (NCR) followed it with an index value of 25.1. What is cost of living? The cost of living varies depending on geographical regions and factors that affect the cost of living in an area include housing, food, utilities, clothing, childcare, and fuel among others. The cost of living is calculated based on different measures such as the consumer price index (CPI), living cost indexes, and wage price index. CPI refers to the change in the value of consumer goods and services. The wage price index, on the other hand, measures the change in labor services prices due to market pressures. Lastly, the living cost indexes calculate the impact of changing costs on different households. The relationship between wages and costs determines affordability and shifts in the cost of living. Mumbai tops the list Mumbai usually tops the list of most expensive cities in India. As the financial and entertainment hub of the country, Mumbai offers wide opportunities and attracts talent from all over the country. It is the second-largest city in India and has one of the most expensive real estates in the world.
The Global Data Regulation Diagnostic provides a comprehensive assessment of the quality of the data governance environment. Diagnostic results show that countries have put in greater effort in adopting enabler regulatory practices than in safeguard regulatory practices. However, for public intent data, enablers for private intent data, safeguards for personal and nonpersonal data, cybersecurity and cybercrime, as well as cross-border data flows. Across all these dimensions, no income group demonstrates advanced regulatory frameworks across all dimensions, indicating significant room for the regulatory development of both enablers and safeguards remains at an intermediate stage: 47 percent of enabler good practices and 41 percent of good safeguard practices are adopted across countries. Under the enabler and safeguard pillars, the diagnostic covers dimensions of e-commerce/e-transactions, enablers further improvement on data governance environment.
The Global Data Regulation Diagnostic is the first comprehensive assessment of laws and regulations on data governance. It covers enabler and safeguard regulatory practices in 80 countries providing indicators to assess and compare their performance. This Global Data Regulation Diagnostic develops objective and standardized indicators to measure the regulatory environment for the data economy across countries. The indicators aim to serve as a diagnostic tool so countries can assess and compare their performance vis-á-vis other countries. Understanding the gap with global regulatory good practices is a necessary first step for governments when identifying and prioritizing reforms.
80 countries
Country
Observation data/ratings [obs]
The diagnostic is based on a detailed assessment of domestic laws, regulations, and administrative requirements in 80 countries selected to ensure a balanced coverage across income groups, regions, and different levels of digital technology development. Data are further verified through a detailed desk research of legal texts, reflecting the regulatory status of each country as of June 1, 2020.
Mail Questionnaire [mail]
The questionnaire comprises 37 questions designed to determine if a country has adopted good regulatory practice on data governance. The responses are then scored and assigned a normative interpretation. Related questions fall into seven clusters so that when the scores are averaged, each cluster provides an overall sense of how it performs in its corresponding regulatory and legal dimensions. These seven dimensions are: (1) E-commerce/e-transaction; (2) Enablers for public intent data; (3) Enablers for private intent data; (4) Safeguards for personal data; (5) Safeguards for nonpersonal data; (6) Cybersecurity and cybercrime; (7) Cross-border data transfers.
100%
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.590 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -2.590 % in 2021 and a record low of -2.590 % in 2021. Colombia CO: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Comparing the 130 selected regions regarding the gini index , South Africa is leading the ranking (0.63 points) and is followed by Namibia with 0.58 points. At the other end of the spectrum is Slovakia with 0.23 points, indicating a difference of 0.4 points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from 0 (=total equality of incomes) to one (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
The average transaction price of new housing in Europe was the highest in Norway, whereas existing homes were the most expensive in Austria. Since there is no central body that collects and tracks transaction activity or house prices across the whole continent or the European Union, not all countries are included. To compile the ranking, the source weighed the transaction prices of residential properties in the most important cities in each country based on data from their national offices. For example, in Germany, the cities included were Munich, Hamburg, Frankfurt, and Berlin. House prices have been soaring, with Sweden topping the ranking Considering the RHPI of houses in Europe (the price index in real terms, which measures price changes of single-family properties adjusted for the impact of inflation), however, the picture changes. Sweden, Luxembourg and Norway top this ranking, meaning residential property prices have surged the most in these countries. Real values were calculated using the so-called Personal Consumption Expenditure Deflator (PCE), This PCE uses both consumer prices as well as consumer expenditures, like medical and health care expenses paid by employers. It is meant to show how expensive housing is compared to the way of living in a country. Home ownership highest in Eastern Europe The home ownership rate in Europe varied from country to country. In 2020, roughly half of all homes in Germany were owner-occupied whereas home ownership was at nearly 97 percent in Romania or around 90 percent in Slovakia and Lithuania. These numbers were considerably higher than in France or Italy, where homeowners made up 65 percent and 72 percent of their respective populations.For more information on the topic of property in Europe, visit the following pages as a starting point for your research: real estate investments in Europe and residential real estate in Europe.
Gross National Income (GNI) per Capita based on purchasing power parity (current international $) by country for 2014. This is a filtered layer based on the "Gross National Income by country, 1990-2010 time series" layer. GNI based on purchasing power parity rates allows for easier comparison of countries by taking into account price differences between countries. GNI is the sum of value added by all resident producers plus any product taxes (less subsidies) not included in the valuation of output plus net receipts of primary income (compensation of employees and property income) from abroad. Data are in current international dollars based on the 2011 ICP round.Data Sources: World Bank, International Comparison Program database; Country shapes from Natural Earth 50M scale data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Cross-national research on the causes and consequences of income inequality has been hindered by the limitations of the existing inequality datasets: greater coverage across countries and over time has been available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to meet the needs of those engaged in broadly cross-national research by maximizing the comparability of income inequality data while maintaining the widest possible coverage across countries and over time. The SWIID’s income inequality estimates are based on thousands of reported Gini indices from hundreds of published sources, including the OECD Income Distribution Database, the Socio-Economic Database for Latin America and the Caribbean generated by CEDLAS and the World Bank, Eurostat, the World Bank’s PovcalNet, the UN Economic Commission for Latin America and the Caribbean, national statistical offices around the world, and academic studies while minimizing reliance on problematic assumptions by using as much information as possible from proximate years within the same country. The data collected and harmonized by the Luxembourg Income Study is employed as the standard. The SWIID currently incorporates comparable Gini indices of disposable and market income inequality for 199 countries for as many years as possible from 1960 to the present; it also includes information on absolute and relative redistribution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Income Share Held by Second 20% data was reported at 12.800 % in 2020. This records a decrease from the previous number of 13.100 % for 2019. Germany DE: Income Share Held by Second 20% data is updated yearly, averaging 13.100 % from Dec 1991 (Median) to 2020, with 30 observations. The data reached an all-time high of 13.700 % in 1996 and a record low of 12.800 % in 2020. Germany DE: Income Share Held by Second 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Social: Poverty and Inequality. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Fourth 20% data was reported at 22.600 % in 2016. This records a decrease from the previous number of 22.700 % for 2013. United States US: Income Share Held by Fourth 20% data is updated yearly, averaging 22.700 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 23.600 % in 1986 and a record low of 22.300 % in 2000. United States US: Income Share Held by Fourth 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
El Salvador SV: Income Share Held by Highest 20% data was reported at 46.400 % in 2016. This records a decrease from the previous number of 47.200 % for 2015. El Salvador SV: Income Share Held by Highest 20% data is updated yearly, averaging 52.400 % from Dec 1991 (Median) to 2016, with 22 observations. The data reached an all-time high of 57.600 % in 1991 and a record low of 46.400 % in 2016. El Salvador SV: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s El Salvador – Table SV.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Hill Country Village: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hill Country Village median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of this study was to compare the clinical characteristics and outcomes of COVID-19 survivors and non-survivors who were transferred from general wards to critical care units in four tertiary hospitals in Nepal. The study employed a retrospective observational design, utilizing data from the ICU registry managed by the Nepal Intensive Care Research Foundation (NICRF) which utilized Case Report Forms that contained comprehensive information on patients admitted to the ICU. Demographic data, clinical characteristics, laboratory parameters, treatments, and outcomes were analyzed. The statistical analysis involved the use of the Mann-Whitney U test for continuous variables and Pearson's chi-squared test for categorical variables. Fisher's exact test was applied when expected frequencies were less than 5. IBM Statistical Package for the Social Sciences (SPSS) software, version 25, was used for analysis. Ethical clearance for the study was obtained from the Nepal Health Research Council on January 23, 2023 (Ref No. 1698/2022). The study received exemption from the review of secondary data, as the information was de-identified and did not involve direct patient participation. The ethical approval ensured compliance with ethical standards and protected the rights and confidentiality of the study participants.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ireland: Cost of living index, world average = 100: The latest value from 2021 is 175.68 index points, an increase from 157.19 index points in 2017. In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Ireland from 2017 to 2021 is 166.44 index points. The minimum value, 157.19 index points, was reached in 2017 while the maximum of 175.68 index points was recorded in 2021.