100+ datasets found
  1. Supplementary material from "Visual comparison of two data sets: Do people...

    • figshare.com
    xlsx
    Updated Mar 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robin Kramer; Caitlin Telfer; Alice Towler (2017). Supplementary material from "Visual comparison of two data sets: Do people use the means and the variability?" [Dataset]. http://doi.org/10.6084/m9.figshare.4751095.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 14, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Robin Kramer; Caitlin Telfer; Alice Towler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In our everyday lives, we are required to make decisions based upon our statistical intuitions. Often, these involve the comparison of two groups, such as luxury versus family cars and their suitability. Research has shown that the mean difference affects judgements where two sets of data are compared, but the variability of the data has only a minor influence, if any at all. However, prior research has tended to present raw data as simple lists of values. Here, we investigated whether displaying data visually, in the form of parallel dot plots, would lead viewers to incorporate variability information. In Experiment 1, we asked a large sample of people to compare two fictional groups (children who drank ‘Brain Juice’ versus water) in a one-shot design, where only a single comparison was made. Our results confirmed that only the mean difference between the groups predicted subsequent judgements of how much they differed, in line with previous work using lists of numbers. In Experiment 2, we asked each participant to make multiple comparisons, with both the mean difference and the pooled standard deviation varying across data sets they were shown. Here, we found that both sources of information were correctly incorporated when making responses. Taken together, we suggest that increasing the salience of variability information, through manipulating this factor across items seen, encourages viewers to consider this in their judgements. Such findings may have useful applications for best practices when teaching difficult concepts like sampling variation.

  2. d

    Sea Surface Temperature (SST) Standard Deviation of Long-term Mean,...

    • catalog.data.gov
    • data.ioos.us
    • +2more
    Updated Jan 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Ecological Analysis and Synthesis (NCEAS) (Point of Contact) (2025). Sea Surface Temperature (SST) Standard Deviation of Long-term Mean, 2000-2013 - Hawaii [Dataset]. https://catalog.data.gov/dataset/sea-surface-temperature-sst-standard-deviation-of-long-term-mean-2000-2013-hawaii
    Explore at:
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    National Center for Ecological Analysis and Synthesis (NCEAS) (Point of Contact)
    Area covered
    Hawaii
    Description

    Sea surface temperature (SST) plays an important role in a number of ecological processes and can vary over a wide range of time scales, from daily to decadal changes. SST influences primary production, species migration patterns, and coral health. If temperatures are anomalously warm for extended periods of time, drastic changes in the surrounding ecosystem can result, including harmful effects such as coral bleaching. This layer represents the standard deviation of SST (degrees Celsius) of the weekly time series from 2000-2013. Three SST datasets were combined to provide continuous coverage from 1985-2013. The concatenation applies bias adjustment derived from linear regression to the overlap periods of datasets, with the final representation matching the 0.05-degree (~5-km) near real-time SST product. First, a weekly composite, gap-filled SST dataset from the NOAA Pathfinder v5.2 SST 1/24-degree (~4-km), daily dataset (a NOAA Climate Data Record) for each location was produced following Heron et al. (2010) for January 1985 to December 2012. Next, weekly composite SST data from the NOAA/NESDIS/STAR Blended SST 0.1-degree (~11-km), daily dataset was produced for February 2009 to October 2013. Finally, a weekly composite SST dataset from the NOAA/NESDIS/STAR Blended SST 0.05-degree (~5-km), daily dataset was produced for March 2012 to December 2013. The standard deviation of the long-term mean SST was calculated by taking the standard deviation over all weekly data from 2000-2013 for each pixel.

  3. Datasets from an interlaboratory comparison to characterize a multi-modal...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jul 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2022). Datasets from an interlaboratory comparison to characterize a multi-modal polydisperse sub-micrometer bead dispersion [Dataset]. https://catalog.data.gov/dataset/datasets-from-an-interlaboratory-comparison-to-characterize-a-multi-modal-polydisperse-sub
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    These four data files contain datasets from an interlaboratory comparison that characterized a polydisperse five-population bead dispersion in water. A more detailed version of this description is available in the ReadMe file (PdP-ILC_datasets_ReadMe_v1.txt), which also includes definitions of abbreviations used in the data files. Paired samples were evaluated, so the datasets are organized as pairs associated with a randomly assigned laboratory number. The datasets are organized in the files by instrument type: PTA (particle tracking analysis), RMM (resonant mass measurement), ESZ (electrical sensing zone), and OTH (other techniques not covered in the three largest groups, including holographic particle characterization, laser diffraction, flow imaging, and flow cytometry). In the OTH group, the specific instrument type for each dataset is noted. Each instrument type (PTA, RMM, ESZ, OTH) has a dedicated file. Included in the data files for each dataset are: (1) the cumulative particle number concentration (PNC, (1/mL)); (2) the concentration distribution density (CDD, (1/mL·nm)) based upon five bins centered at each particle population peak diameter; (3) the CDD in higher resolution, varied-width bins. The lower-diameter bin edge (µm) is given for (2) and (3). Additionally, the PTA, RMM, and ESZ files each contain unweighted mean cumulative particle number concentrations and concentration distribution densities calculated from all datasets reporting values. The associated standard deviations and standard errors of the mean are also given. In the OTH file, the means and standard deviations were calculated using only data from one of the sub-groups (holographic particle characterization) that had n = 3 paired datasets. Where necessary, datasets not using the common bin resolutions are noted (PTA, OTH groups). The data contained here are presented and discussed in a manuscript to be submitted to the Journal of Pharmaceutical Sciences and presented as part of that scientific record.

  4. N

    Median Household Income Variation by Family Size in South Range, MI:...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b74898b-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, South Range did not include 4, 5, 6, or 7-person households. Across the different household sizes in South Range the mean income is $51,844, and the standard deviation is $18,238. The coefficient of variation (CV) is 35.18%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $31,226. It then further increased to $65,869 for 3-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/south-range-mi-median-household-income-by-household-size.jpeg" alt="South Range, MI median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range median household income. You can refer the same here

  5. A

    ‘Datasets from an interlaboratory comparison to characterize a multi-modal...

    • analyst-2.ai
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Datasets from an interlaboratory comparison to characterize a multi-modal polydisperse sub-micrometer bead dispersion’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-datasets-from-an-interlaboratory-comparison-to-characterize-a-multi-modal-polydisperse-sub-micrometer-bead-dispersion-1603/c07ee221/?iid=004-407&v=presentation
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Datasets from an interlaboratory comparison to characterize a multi-modal polydisperse sub-micrometer bead dispersion’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/7f7e5222-e579-486e-b5d7-c02d511d1964 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    These four data files contain datasets from an interlaboratory comparison that characterized a polydisperse five-population bead dispersion in water. A more detailed version of this description is available in the ReadMe file (PdP-ILC_datasets_ReadMe_v1.txt), which also includes definitions of abbreviations used in the data files. Paired samples were evaluated, so the datasets are organized as pairs associated with a randomly assigned laboratory number. The datasets are organized in the files by instrument type: PTA (particle tracking analysis), RMM (resonant mass measurement), ESZ (electrical sensing zone), and OTH (other techniques not covered in the three largest groups, including holographic particle characterization, laser diffraction, flow imaging, and flow cytometry). In the OTH group, the specific instrument type for each dataset is noted. Each instrument type (PTA, RMM, ESZ, OTH) has a dedicated file. Included in the data files for each dataset are: (1) the cumulative particle number concentration (PNC, (1/mL)); (2) the concentration distribution density (CDD, (1/mL·nm)) based upon five bins centered at each particle population peak diameter; (3) the CDD in higher resolution, varied-width bins. The lower-diameter bin edge (µm) is given for (2) and (3). Additionally, the PTA, RMM, and ESZ files each contain unweighted mean cumulative particle number concentrations and concentration distribution densities calculated from all datasets reporting values. The associated standard deviations and standard errors of the mean are also given. In the OTH file, the means and standard deviations were calculated using only data from one of the sub-groups (holographic particle characterization) that had n = 3 paired datasets. Where necessary, datasets not using the common bin resolutions are noted (PTA, OTH groups). The data contained here are presented and discussed in a manuscript to be submitted to the Journal of Pharmaceutical Sciences and presented as part of that scientific record.

    --- Original source retains full ownership of the source dataset ---

  6. d

    AVISO Level 4 Absolute Dynamic Topography for Climate Model Comparison...

    • catalog.data.gov
    • data.nasa.gov
    • +1more
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AVISO;NASA/JPL/PODAAC (2025). AVISO Level 4 Absolute Dynamic Topography for Climate Model Comparison Standard Error [Dataset]. https://catalog.data.gov/dataset/aviso-level-4-absolute-dynamic-topography-for-climate-model-comparison-standard-error
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset provided by
    AVISO;NASA/JPL/PODAAC
    Description

    These data are the standard error calculated from the AVISO Level 4 Absolute Dynamic Topography for Climate Model Comparison Number of Observations data set ( in PO.DAAC Drive at https://podaac-tools.jpl.nasa.gov/drive/files/allData/aviso/L4/abs_dynamic_topo ). This data set is not meant to be used alone, but with the absolute dynamic topography data. These data were generated to help support the CMIP5 (Coupled Model Intercomparison Project Phase 5) portion of PCMDI (Program for Climate Model Diagnosis and Intercomparison). The dynamic topograhy are from sea surface height measured by several satellites, Envisat, TOPEX/Poseidon, Jason-1 and OSTM/Jason-2 and referenced to the geoid. These data were provided by AVISO (French space agency data provider), which are based on a similar dynamic topography data set they already produce( http://www.aviso.oceanobs.com/index.php?id=1271 ).

  7. Z

    Benchmark Multi-Omics Datasets for Methods Comparison

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Lily (2021). Benchmark Multi-Omics Datasets for Methods Comparison [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_5683001
    Explore at:
    Dataset updated
    Nov 14, 2021
    Dataset provided by
    Wang, Lily
    Odom, Gabriel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathway Multi-Omics Simulated Data

    These are synthetic variations of the TCGA COADREAD data set (original data available at http://linkedomics.org/data_download/TCGA-COADREAD/). This data set is used as a comprehensive benchmark data set to compare multi-omics tools in the manuscript "pathwayMultiomics: An R package for efficient integrative analysis of multi-omics datasets with matched or un-matched samples".

    There are 100 sets (stored as 100 sub-folders, the first 50 in "pt1" and the second 50 in "pt2") of random modifications to centred and scaled copy number, gene expression, and proteomics data saved as compressed data files for the R programming language. These data sets are stored in subfolders labelled "sim001", "sim002", ..., "sim100". Each folder contains the following contents: 1) "indicatorMatricesXXX_ls.RDS" is a list of simple triplet matrices showing which genes (in which pathways) and which samples received the synthetic treatment (where XXX is the simulation run label: 001, 002, ...), (2) "CNV_partitionA_deltaB.RDS" is the synthetically modified copy number variation data (where A represents the proportion of genes in each gene set to receive the synthetic treatment [partition 1 is 20%, 2 is 40%, 3 is 60% and 4 is 80%] and B is the signal strength in units of standard deviations), (3) "RNAseq_partitionA_deltaB.RDS" is the synthetically modified gene expression data (same parameter legend as CNV), and (4) "Prot_partitionA_deltaB.RDS" is the synthetically modified protein expression data (same parameter legend as CNV).

    Supplemental Files

    The file "cluster_pathway_collection_20201117.gmt" is the collection of gene sets used for the simulation study in Gene Matrix Transpose format. Scripts to create and analyze these data sets available at: https://github.com/TransBioInfoLab/pathwayMultiomics_manuscript_supplement

  8. N

    Median Household Income Variation by Family Size in State Line City, IN:...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in State Line City, IN: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b7a0822-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    State Line City
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in State Line City, IN, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, State Line City did not include 4, 5, 6, or 7-person households. Across the different household sizes in State Line City the mean income is $64,968, and the standard deviation is $33,244. The coefficient of variation (CV) is 51.17%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $36,144. It then further increased to $101,336 for 3-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/state-line-city-in-median-household-income-by-household-size.jpeg" alt="State Line City, IN median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for State Line City median household income. You can refer the same here

  9. s

    standard deviation of 12D

    • simonscmap.com
    Updated May 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angel White Lab, University of Hawaii at Manoa (2016). standard deviation of 12D [Dataset]. https://simonscmap.com/catalog/datasets/Gradients1_KOK1606_14C_NPP
    Explore at:
    Dataset updated
    May 1, 2016
    Dataset authored and provided by
    Angel White Lab, University of Hawaii at Manoa
    Description

    standard deviation of 12D measured via Incubation in mg C/m^3. Part of dataset Gradients 1-KOK1606 - Net Primary Productivity (via 14C method)

  10. i

    Normal Distribution Simulated Dataset 1

    • ieee-dataport.org
    Updated Apr 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabiriele Bulivou (2022). Normal Distribution Simulated Dataset 1 [Dataset]. https://ieee-dataport.org/documents/normal-distribution-simulated-dataset-1
    Explore at:
    Dataset updated
    Apr 25, 2022
    Authors
    Gabiriele Bulivou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset consists of a simulated normal distribution data having n = 500 data points and mean = 80 and standard deviation = 2.

  11. Standard Deviation of Monthly Frequency of Dust Storm over Land for Varying...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Standard Deviation of Monthly Frequency of Dust Storm over Land for Varying Intensities, Based on MODIS Terra Deep Blue Level 2 Aerosol Products MOD04_L2 Collection 6.1, on a Global 0.1 by 0.1 Degree Grid, Level 3 Version 1 (MODFDS_SDV_GLB_L3) at GES DISC - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/standard-deviation-of-monthly-frequency-of-dust-storm-over-land-for-varying-intensities-ba-e2f1d
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Version 1 is the current version of the dataset.This collection MODFDS_SDV_GLB_L3 provides level 3 standard deviation of climatological monthly frequency of dust storms (FDS) over land from 175°W to 175°E and 80°S to 80°N at a spatial resolution of 0.1˚ x 0.1˚. It is derived from Level 2, the Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol products Collection 6.1 from Terra (MOD04_L2). The dataset is the standard deviation of climatological monthly mean for each month over 2000 to 2022.The FDS is calculated as the number of days per month when the daily dust optical depth is greater than a threshold optical depth (e.g., 0.025) with two quality flags: the lowest (1) and highest (3). It is advised to use flag 1, which is of lower quality, over dust source regions, and flag 3 over remote areas or polluted regions. Eight thresholds (0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2) are saved separately in eight files.If you have any questions, please read the README document first and post your question to the NASA Earthdata Forum (forum.earthdata.nasa.gov) or email the GES DISC Help Desk (gsfc-dl-help-disc@mail.nasa.gov).

  12. f

    Descriptive statistics of the dataset with mean, standard deviation (SD),...

    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Achim Langenbucher; Nóra Szentmáry; Alan Cayless; Jascha Wendelstein; Peter Hoffmann (2023). Descriptive statistics of the dataset with mean, standard deviation (SD), median, and the lower (quantile 5%) and upper (quantile 95%) boundary of the 90% confidence interval. [Dataset]. http://doi.org/10.1371/journal.pone.0267352.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Achim Langenbucher; Nóra Szentmáry; Alan Cayless; Jascha Wendelstein; Peter Hoffmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Descriptive statistics of the dataset with mean, standard deviation (SD), median, and the lower (quantile 5%) and upper (quantile 95%) boundary of the 90% confidence interval.

  13. e

    Subjective wellbeing, 'Life Satisfaction', standard deviation

    • data.europa.eu
    • opendatacommunities.org
    • +1more
    html, sparql
    Updated Oct 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2021). Subjective wellbeing, 'Life Satisfaction', standard deviation [Dataset]. https://data.europa.eu/data/datasets/subjective-wellbeing-life-satisfaction-standard-deviation
    Explore at:
    sparql, htmlAvailable download formats
    Dataset updated
    Oct 11, 2021
    Dataset authored and provided by
    Ministry of Housing, Communities and Local Government
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Standard deviation of responses for 'Life Satisfaction' in the First ONS Annual Experimental Subjective Wellbeing survey.

    The Office for National Statistics has included the four subjective well-being questions below on the Annual Population Survey (APS), the largest of their household surveys.

    • Overall, how satisfied are you with your life nowadays?
    • Overall, to what extent do you feel the things you do in your life are worthwhile?
    • Overall, how happy did you feel yesterday?
    • Overall, how anxious did you feel yesterday?

    This dataset presents results from the first of these questions, "Overall, how satisfied are you with your life nowadays?". Respondents answer these questions on an 11 point scale from 0 to 10 where 0 is ‘not at all’ and 10 is ‘completely’. The well-being questions were asked of adults aged 16 and older.

    Well-being estimates for each unitary authority or county are derived using data from those respondents who live in that place. Responses are weighted to the estimated population of adults (aged 16 and older) as at end of September 2011.

    The data cabinet also makes available the proportion of people in each county and unitary authority that answer with ‘low wellbeing’ values. For the ‘life satisfaction’ question answers in the range 0-6 are taken to be low wellbeing.

    This dataset contains the standard deviation of the responses, alongside the corresponding sample size.

    The ONS survey covers the whole of the UK, but this dataset only includes results for counties and unitary authorities in England, for consistency with other statistics available at this website.

    At this stage the estimates are considered ‘experimental statistics’, published at an early stage to involve users in their development and to allow feedback. Feedback can be provided to the ONS via this email address.

    The APS is a continuous household survey administered by the Office for National Statistics. It covers the UK, with the chief aim of providing between-census estimates of key social and labour market variables at a local area level. Apart from employment and unemployment, the topics covered in the survey include housing, ethnicity, religion, health and education. When a household is surveyed all adults (aged 16+) are asked the four subjective well-being questions.

    The 12 month Subjective Well-being APS dataset is a sub-set of the general APS as the well-being questions are only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. This reduces the size of the achieved sample to approximately 120,000 adult respondents in England.

    The original data is available from the ONS website.

    Detailed information on the APS and the Subjective Wellbeing dataset is available here.

    As well as collecting data on well-being, the Office for National Statistics has published widely on the topic of wellbeing. Papers and further information can be found here.

  14. N

    Median Household Income Variation by Family Size in United States:...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in United States: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b8874db-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in United States, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, all of the household sizes were found in United States. Across the different household sizes in United States the mean income is $94,149, and the standard deviation is $26,829. The coefficient of variation (CV) is 28.50%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $38,463. It then further increased to $114,329 for 7-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/united-states-median-household-income-by-household-size.jpeg" alt="United States median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States median household income. You can refer the same here

  15. f

    Comparative analysis of ECG feature values and their standard deviation.

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Menaa Nawaz; Jameel Ahmed (2023). Comparative analysis of ECG feature values and their standard deviation. [Dataset]. http://doi.org/10.1371/journal.pone.0279305.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Menaa Nawaz; Jameel Ahmed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparative analysis of ECG feature values and their standard deviation.

  16. f

    Means and standard deviations of BMI for each polymorphism, and main effects...

    • plos.figshare.com
    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chunhui Chen; Wen Chen; Chuansheng Chen; Robert Moyzis; Qinghua He; Xuemei Lei; Jin Li; Yunxin Wang; Bin Liu; Daiming Xiu; Bi Zhu; Qi Dong (2023). Means and standard deviations of BMI for each polymorphism, and main effects and post hoc comparisons of SNPs that showed significant main effects and were used in subsequent multiple regression analysis. [Dataset]. http://doi.org/10.1371/journal.pone.0058717.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Chunhui Chen; Wen Chen; Chuansheng Chen; Robert Moyzis; Qinghua He; Xuemei Lei; Jin Li; Yunxin Wang; Bin Liu; Daiming Xiu; Bi Zhu; Qi Dong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Note: Empty cells mean no such genotypes were found in our sample. Maj: Major allele; Het: Heterozygote; Min: Minor allele.aResults (p values) of post hoc comparisons. mh = Maj versus Het, mm = Maj versus Min, hm = Het versus Min.bPost hoc comparison was not run because there were only 2 groups for this locus.

  17. Supporting data for 'DFENS: Diffusion chronometry using Finite Elements and...

    • data-search.nerc.ac.uk
    html
    Updated Feb 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2021). Supporting data for 'DFENS: Diffusion chronometry using Finite Elements and Nested Sampling' (NERC Grant NE/L002507/1) [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/api/records/ba70f4a5-fb5a-303c-e054-002128a47908
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 5, 2021
    Dataset authored and provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Time period covered
    Oct 1, 2014 - Jan 26, 2021
    Description

    This is supporting data for the manuscript entitled 'DFENS: Diffusion chronometry using Finite Elements and Nested Sampling' by E. J. F. Mutch, J. Maclennan, O. Shorttle, J. F. Rudge and D. Neave. Preprint here: https://doi.org/10.1002/essoar.10503709.1 Data Set S1. ds01.csv Electron probe microanalysis (EPMA) profile data of olivine crystals used in this study. Standard deviations are averaged values of standard deviations from counting statistics and repeat measurements of secondary standards. Data Set S2. ds02.csv Plagioclase compositional profiles used in this study, including SIMS, EPMA and step scan data. Standard deviations for EPMA analyses are averaged values of standard deviations from counting statistics and repeat measurements of secondary standards. Standard deviations for SIMS and step scan analyses are based on analytical precision of secondary standards. Data Set S3. ds03.csv Angles between the EPMA profile and the main olivine crystallographic axes measured by electron backscatter diffraction (EBSD). 'angle100X' is the angle between the [100] crystallographic axis and the x direction of the EBSD map, 'angle100Y' is the angle between [100] crystallographic axis and the y direction of the EBSD map, and 'angle100Z' is the angle between the [100] crystallographic axis and the z direction in the EBSD map etc. 'angle100P' is the angle between the EPMA profile and the [100] crystallographic axis, 'angle010P' is the angle between the EPMA profile and the [010] crystallographic axis, and 'angle100P' is the angle between the EPMA profile and the [001] crystallographic axis. All angles are in degrees. Data Set S4. ds04.csv Median timescales and 1 sigma errors from the olivine crystals of this study. The +1 sigma (days) is the quantile value calculated at 0.841 (i.e. 0.5 + (0.6826 / 2)). The -1 sigma (days) is therefore the quantile calculated at approximately 0.158 (which is 1 - 0.841). The 2 sigma is basically the same but it is 0.5 + (0.95/2). The value quoted as the +1 sigma (error) is the difference between the upper 1 sigma quantile and the median. Likewise the -1 sigma (error) is the difference between the median and the lower 1 sigma quantile. Data Set S5. ds05.xlsx Median timescales and 1 sigma errors from the plagioclase crystals of this study. Results from each of the parameterisations of the Mg-in-plagioclase diffusion data are included: Faak et al, (2013), Van Orman et al., (2014) and a combined expression. Data Set S6. ds06.xlsx Spreadsheet containing the regression parameters and covariance matrices used in this study and in Mutch et al. (2019). Additional versions of the olivine regressions where the ln fO2 is expressed in Pa have been made for completeness. We recommend using the versions where ln fO2 is expressed in its native form (bars).

  18. r

    Data from: SeaWIFS K490 Standard Deviation

    • researchdata.edu.au
    • data.gov.au
    Updated Jul 31, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Ocean Data Network (2008). SeaWIFS K490 Standard Deviation [Dataset]. https://researchdata.edu.au/seawifs-k490-standard-deviation/3639958
    Explore at:
    Dataset updated
    Jul 31, 2008
    Dataset provided by
    Australian Ocean Data Network
    Area covered
    Description

    This data set contains the standard deviation of SeaWIFS k490 generated from the climatology monthly means; the monthly climatologies represent the mean values for each month across the whole dataset time series. K490 indicates the turbidity of the water column: how the visible light in the blue; green region of the spectrum penetrates within the water column. It is directly related to the presence of scattering particles in the water column. The data are received as monthly composites, with a 4 km resolution, and are constrained to the region between 90E and 180E, and 10N to 60S. The data was sourced from http://oceancolor.gsfc.nasa.gov/SeaWiFS/. This dataset is a contribution to the CERF Marine Biodiversity Hub.

  19. f

    Data from: The Often-Overlooked Power of Summary Statistics in Exploratory...

    • acs.figshare.com
    xlsx
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tahereh G. Avval; Behnam Moeini; Victoria Carver; Neal Fairley; Emily F. Smith; Jonas Baltrusaitis; Vincent Fernandez; Bonnie. J. Tyler; Neal Gallagher; Matthew R. Linford (2023). The Often-Overlooked Power of Summary Statistics in Exploratory Data Analysis: Comparison of Pattern Recognition Entropy (PRE) to Other Summary Statistics and Introduction of Divided Spectrum-PRE (DS-PRE) [Dataset]. http://doi.org/10.1021/acs.jcim.1c00244.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    ACS Publications
    Authors
    Tahereh G. Avval; Behnam Moeini; Victoria Carver; Neal Fairley; Emily F. Smith; Jonas Baltrusaitis; Vincent Fernandez; Bonnie. J. Tyler; Neal Gallagher; Matthew R. Linford
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Unsupervised exploratory data analysis (EDA) is often the first step in understanding complex data sets. While summary statistics are among the most efficient and convenient tools for exploring and describing sets of data, they are often overlooked in EDA. In this paper, we show multiple case studies that compare the performance, including clustering, of a series of summary statistics in EDA. The summary statistics considered here are pattern recognition entropy (PRE), the mean, standard deviation (STD), 1-norm, range, sum of squares (SSQ), and X4, which are compared with principal component analysis (PCA), multivariate curve resolution (MCR), and/or cluster analysis. PRE and the other summary statistics are direct methods for analyzing datathey are not factor-based approaches. To quantify the performance of summary statistics, we use the concept of the “critical pair,” which is employed in chromatography. The data analyzed here come from different analytical methods. Hyperspectral images, including one of a biological material, are also analyzed. In general, PRE outperforms the other summary statistics, especially in image analysis, although a suite of summary statistics is useful in exploring complex data sets. While PRE results were generally comparable to those from PCA and MCR, PRE is easier to apply. For example, there is no need to determine the number of factors that describe a data set. Finally, we introduce the concept of divided spectrum-PRE (DS-PRE) as a new EDA method. DS-PRE increases the discrimination power of PRE. We also show that DS-PRE can be used to provide the inputs for the k-nearest neighbor (kNN) algorithm. We recommend PRE and DS-PRE as rapid new tools for unsupervised EDA.

  20. Dataset of netcdfs generated (after processing) in hydrophone comparison...

    • zenodo.org
    nc, txt
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Albert Garcia Benadí; Albert Garcia Benadí; Enoc Martínez Padró; Enoc Martínez Padró; Silvana Neves; Silvana Neves; Sara Pensieri; Sara Pensieri; ROBERTO BOZZANO; ROBERTO BOZZANO; Hélène Pihan-Le Bars; Hélène Pihan-Le Bars (2025). Dataset of netcdfs generated (after processing) in hydrophone comparison exercise and calibration report of hydrophones included in Task 9 from the european project MINKE [ https://minke.eu/ ] [Dataset]. http://doi.org/10.5281/zenodo.14732183
    Explore at:
    nc, txtAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Albert Garcia Benadí; Albert Garcia Benadí; Enoc Martínez Padró; Enoc Martínez Padró; Silvana Neves; Silvana Neves; Sara Pensieri; Sara Pensieri; ROBERTO BOZZANO; ROBERTO BOZZANO; Hélène Pihan-Le Bars; Hélène Pihan-Le Bars
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset include the netcdf and the calibration reports of the hydrophones.


    The systematic followed to create the netcdf is:
    - Automatic detection of the tone time interval.
    - This interval is divided into 100 elements.
    - Each of these news intervals is evaluated with the test: detection threshold, homogeneity and frequency.


    The structure of netcdf is detailed in the same file but is now explained in more detail:

    - Cycle: It's the cycle number. The expected number is 50.
    - Freq: It's the expected frequency.
    - Freq_found: It's the frequency detected after the automatic tone process.
    - Offset: Offset from the signal.
    - SPL: It's the Signal, expressaed in 1/V, obtained from the 100 divisions of each tone detection.
    - homogeneity: This parameter has values 0 and 1. The good signal is 1, and the values of 0 corresponding at the values greater than 2 standard deviations
    - u_range: The contribution to the uncertainty is the range (Max-Min) of the 100 intervals
    - u_sta: The contribution to the uncertainty is the statistical deviation of the 100 intervals

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Robin Kramer; Caitlin Telfer; Alice Towler (2017). Supplementary material from "Visual comparison of two data sets: Do people use the means and the variability?" [Dataset]. http://doi.org/10.6084/m9.figshare.4751095.v1
Organization logo

Supplementary material from "Visual comparison of two data sets: Do people use the means and the variability?"

Explore at:
xlsxAvailable download formats
Dataset updated
Mar 14, 2017
Dataset provided by
Figsharehttp://figshare.com/
Authors
Robin Kramer; Caitlin Telfer; Alice Towler
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In our everyday lives, we are required to make decisions based upon our statistical intuitions. Often, these involve the comparison of two groups, such as luxury versus family cars and their suitability. Research has shown that the mean difference affects judgements where two sets of data are compared, but the variability of the data has only a minor influence, if any at all. However, prior research has tended to present raw data as simple lists of values. Here, we investigated whether displaying data visually, in the form of parallel dot plots, would lead viewers to incorporate variability information. In Experiment 1, we asked a large sample of people to compare two fictional groups (children who drank ‘Brain Juice’ versus water) in a one-shot design, where only a single comparison was made. Our results confirmed that only the mean difference between the groups predicted subsequent judgements of how much they differed, in line with previous work using lists of numbers. In Experiment 2, we asked each participant to make multiple comparisons, with both the mean difference and the pooled standard deviation varying across data sets they were shown. Here, we found that both sources of information were correctly incorporated when making responses. Taken together, we suggest that increasing the salience of variability information, through manipulating this factor across items seen, encourages viewers to consider this in their judgements. Such findings may have useful applications for best practices when teaching difficult concepts like sampling variation.

Search
Clear search
Close search
Google apps
Main menu