60 datasets found
  1. d

    Open Data Website Traffic

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.lacity.org
    Description

    Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

  2. o

    Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values)

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Jun 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakshitha Godahewa; Christoph Bergmeir; Geoff Webb (2020). Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values) [Dataset]. http://doi.org/10.5281/zenodo.3898473
    Explore at:
    Dataset updated
    Jun 13, 2020
    Authors
    Rakshitha Godahewa; Christoph Bergmeir; Geoff Webb
    Description

    This dataset was used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10. The original dataset contains missing values. They have been simply replaced by zeros. {"references": ["Google, 2017. Web traffic time series forecasting. URL https://www.kaggle.com/c/web-traffic-time-series-forecasting"]}

  3. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  4. A

    ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-popular-website-traffic-over-time-62e4/62549059/?iid=003-357&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Background

    Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.

    Methodology

    The data collected originates from SimilarWeb.com.

    Source

    For the analysis and study, go to The Concept Center

    This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.

    How to use this dataset

    • Analyze 11/1/2016 in relation to 2/1/2017
    • Study the influence of 4/1/2017 on 1/1/2017
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Chase Willden

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  5. i

    Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and...

    • ieee-dataport.org
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamad Amar Irsyad Mohd Aminuddin (2024). Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and Mobile Webpages [Dataset]. https://ieee-dataport.org/documents/website-fingerprinting-dataset-browsing-network-traffic-desktop-and-mobile-webpages
    Explore at:
    Dataset updated
    Oct 21, 2024
    Authors
    Mohamad Amar Irsyad Mohd Aminuddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.

  6. Data from: Web Traffic data set

    • kaggle.com
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhinaba Saha (2020). Web Traffic data set [Dataset]. https://www.kaggle.com/datasets/sahaabhi/web-traffic-data-set
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Abhinaba Saha
    Description

    Dataset

    This dataset was created by Abhinaba Saha

    Contents

  7. Website traffic strategies by industry and size of enterprise

    • datasets.ai
    • www150.statcan.gc.ca
    • +3more
    21, 55, 8
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada | Statistique Canada (2024). Website traffic strategies by industry and size of enterprise [Dataset]. https://datasets.ai/datasets/a7882acc-a647-4fa6-a58b-6dae889de472
    Explore at:
    8, 55, 21Available download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Authors
    Statistics Canada | Statistique Canada
    Description

    Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.

  8. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honig, Joshua (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Moran, Madeline
    Homan, Sophia
    Ferrell, Nathan
    Honig, Joshua
    Soni, Shreena
    Chan-Tin, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  9. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  10. Z

    Kaggle Wikipedia Web Traffic Weekly Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bergmeir, Christoph (2021). Kaggle Wikipedia Web Traffic Weekly Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3892976
    Explore at:
    Dataset updated
    Apr 2, 2021
    Dataset provided by
    Montero-Manso, Pablo
    Webb, Geoff
    Godahewa, Rakshitha
    Hyndman, Rob
    Bergmeir, Christoph
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the aggregated version of the daily dataset used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-05, after aggregating them into weekly.

    The original dataset contains missing values. They have been simply replaced by zeros before aggregation.

  11. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    Uzbekistan, Belarus, Jamaica, Latvia, India, Monaco, Saint Vincent and the Grenadines, Liechtenstein, Russian Federation, Jordan
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  12. P

    Traffic Dataset

    • paperswithcode.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Traffic Dataset [Dataset]. https://paperswithcode.com/dataset/traffic
    Explore at:
    Description

    Abstract: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations.

    Data Set CharacteristicsNumber of InstancesAreaAttribute CharacteristicsNumber of AttributesDate DonatedAssociated TasksMissing Values
    Multivariate2101ComputerReal472020-11-17RegressionN/A

    Source: Liang Zhao, liang.zhao '@' emory.edu, Emory University.

    Data Set Information: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. For the detailed data information, please refer to the file README.docx.

    Attribute Information: The 47 features include: (1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), (2) week day (7 features), (3) hour of day (24 features), (4) road direction (4 features), (5) number of lanes (1 feature), and (6) name of the road (1 feature).

    Relevant Papers: Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

    Citation Request: To use these datasets, please cite the papers:

    Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

  13. Data from: HTTPS traffic classification

    • kaggle.com
    Updated Mar 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Đinh Ngọc Ân (2024). HTTPS traffic classification [Dataset]. https://www.kaggle.com/datasets/inhngcn/https-traffic-classification/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 11, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Đinh Ngọc Ân
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The people from Czech are publishing a dataset for the HTTPS traffic classification.

    Since the data were captured mainly in the real backbone network, they omitted IP addresses and ports. The datasets consist of calculated from bidirectional flows exported with flow probe Ipifixprobe. This exporter can export a sequence of packet lengths and times and a sequence of packet bursts and time. For more information, please visit ipfixprobe repository (Ipifixprobe).

    During research, they divided HTTPS into five categories: L -- Live Video Streaming, P -- Video Player, M -- Music Player, U -- File Upload, D -- File Download, W -- Website, and other traffic.

    They have chosen the service representatives known for particular traffic types based on the Alexa Top 1M list and Moz's list of the most popular 500 websites for each category. They also used several popular websites that primarily focus on the audience in Czech. The identified traffic classes and their representatives are provided below:

    Live Video Stream Twitch, Czech TV, YouTube Live Video Player DailyMotion, Stream.cz, Vimeo, YouTube Music Player AppleMusic, Spotify, SoundCloud File Upload/Download FileSender, OwnCloud, OneDrive, Google Drive Website and Other Traffic Websites from Alexa Top 1M list

  14. i

    DoQ+QUIC web traffic dataset

    • ieee-dataport.org
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Levente Csikor (2024). DoQ+QUIC web traffic dataset [Dataset]. https://ieee-dataport.org/documents/doqquic-web-traffic-dataset
    Explore at:
    Dataset updated
    Dec 3, 2024
    Authors
    Levente Csikor
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Moving away from plain-text DNS communications

  15. Daily website visitors (time series regression)

    • kaggle.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bob Nau (2020). Daily website visitors (time series regression) [Dataset]. https://www.kaggle.com/bobnau/daily-website-visitors/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bob Nau
    Description

    Context

    This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.

    Content

    The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.

    Inspiration

    This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.

  16. d

    Traffic Count Segments

    • catalog.data.gov
    • data.tempe.gov
    • +11more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Traffic Count Segments [Dataset]. https://catalog.data.gov/dataset/traffic-count-segments-4a2ab
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Description

    This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changesPublish Method: AutomaticData Dictionary

  17. Data from: web-traffic-time-series-forecasting

    • kaggle.com
    Updated Sep 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nguyễn Văn Tài (2021). web-traffic-time-series-forecasting [Dataset]. https://www.kaggle.com/ch2002043/webtraffictimeseriesforecasting/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 11, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Nguyễn Văn Tài
    Description

    Dataset

    This dataset was created by Nguyễn Văn Tài

    Contents

  18. Traffic Volumes from SCATS Traffic Management System Jan-Jun 2025 DCC -...

    • data.gov.ie
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2025). Traffic Volumes from SCATS Traffic Management System Jan-Jun 2025 DCC - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/dcc-scats-detector-volume-jan-jun-2025
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Traffic volumes data across Dublin City from the SCATS traffic management system. The Sydney Coordinated Adaptive Traffic System (SCATS) is an intelligent transportation system used to manage timing of signal phases at traffic signals. SCATS uses sensors at each traffic signal to detect vehicle presence in each lane and pedestrians waiting to cross at the local site. The vehicle sensors are generally inductive loops installed within the road. 3 resources are provided: SCATS Traffic Volumes Data (Monthly) Contained in this report are traffic counts taken from the SCATS traffic detectors located at junctions. The primary function for these traffic detectors is for traffic signal control. Such devices can also count general traffic volumes at defined locations on approach to a junction. These devices are set at specific locations on approaches to the junction but may not be on all approaches to a junction. As there are multiple junctions on any one route, it could be expected that a vehicle would be counted multiple times as it progress along the route. Thus the traffic volume counts here are best used to represent trends in vehicle movement by selecting a specific junction on the route which best represents the overall traffic flows. Information provided: End Time: time that one hour count period finishes. Region: location of the detector site (e.g. North City, West City, etc). Site: this can be matched with the SCATS Sites file to show location Detector: the detectors/ sensors at each site are numbered Sum volume: total traffic volumes in preceding hour Avg volume: average traffic volumes per 5 minute interval in preceding hour All Dates Traffic Volumes Data This file contains daily totals of traffic flow at each site location. SCATS Site Location Data Contained in this report, the location data for the SCATS sites is provided. The meta data provided includes the following; Site id – This is a unique identifier for each junction on SCATS Site description( CAP) – Descriptive location of the junction containing street name(s) intersecting streets Site description (lower) - – Descriptive location of the junction containing street name(s) intersecting streets Region – The area of the city, adjoining local authority, region that the site is located LAT/LONG – Coordinates Disclaimer: the location files are regularly updated to represent the locations of SCATS sites under the control of Dublin City Council. However site accuracy is not absolute. Information for LAT/LONG and region may not be available for all sites contained. It is at the discretion of the user to link the files for analysis and to create further data. Furthermore, detector communication issues or faulty detectors could also result in an inaccurate result for a given period, so values should not be taken as absolute but can be used to indicate trends.

  19. Google Analytics Sample

    • console.cloud.google.com
    Updated Jul 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Obfuscated%20Google%20Analytics%20360%20data&hl=de&inv=1&invt=Ab2fng (2017). Google Analytics Sample [Dataset]. https://console.cloud.google.com/marketplace/product/obfuscated-ga360-data/obfuscated-ga360-data?hl=de
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    Googlehttp://google.com/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery

  20. d

    Jefferson County KY Traffic Web Cameras

    • catalog.data.gov
    • data.lojic.org
    • +5more
    Updated Apr 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisville/Jefferson County Information Consortium (2023). Jefferson County KY Traffic Web Cameras [Dataset]. https://catalog.data.gov/dataset/jefferson-county-ky-traffic-web-cameras-2b335
    Explore at:
    Dataset updated
    Apr 13, 2023
    Dataset provided by
    Louisville/Jefferson County Information Consortium
    Area covered
    Jefferson County, Kentucky
    Description

    TRIMARC (Traffic Response and Incident Management Assisting the River City) camera locations in Louisville Metro Kentucky. This feature layer was created from a TRIMARC JSON files of camera locations. This item includes description, direction, and videos links and is used in the Louisville Metro Snow Map. The cameras are used to monitor the roadways and verify incidents to assist in freeway and incident management This feature is a static extract and will be reviewed before each snow season for updates. For more information on this feature layer and it's use please contact Louisville Metro GIS or LOJIC. To learn more about TRIMARC please visit the following website http://www.trimarc.org.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic

Open Data Website Traffic

Explore at:
Dataset updated
Jun 21, 2025
Dataset provided by
data.lacity.org
Description

Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

Search
Clear search
Close search
Google apps
Main menu