85 datasets found
  1. a

    Traffic Site

    • hub.arcgis.com
    • data-waikatolass.opendata.arcgis.com
    Updated Sep 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamilton City Council (2021). Traffic Site [Dataset]. https://hub.arcgis.com/maps/hcc::traffic-site
    Explore at:
    Dataset updated
    Sep 9, 2021
    Dataset authored and provided by
    Hamilton City Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Attributes of sites in Hamilton City which collect anonymised data from a sample of vehicles. Note: A Link is the section of the road between two sites

    Column_InfoSite_Id, int : Unique identiferNumber, int : Asset number. Note: If the site is at a signalised intersection, Number will match 'Site_Number' in the table 'Traffic Signal Site Location'Is_Enabled, varchar : Site is currently enabledDisabled_Date, datetime : If currently disabled, the date at which the site was disabledSite_Name, varchar : Description of the site locationLatitude, numeric : North-south geographic coordinatesLongitude, numeric : East-west geographic coordinates

    Relationship
    
    
    
    
    
    
    
    
    
    Disclaimer
    
    Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.
    
    Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.
    
    While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:
    
    ‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
    
  2. i

    Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and...

    • ieee-dataport.org
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamad Amar Irsyad Mohd Aminuddin (2024). Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and Mobile Webpages [Dataset]. https://ieee-dataport.org/documents/website-fingerprinting-dataset-browsing-network-traffic-desktop-and-mobile-webpages
    Explore at:
    Dataset updated
    Oct 21, 2024
    Authors
    Mohamad Amar Irsyad Mohd Aminuddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.

  3. Traffic Flow Data Jan to June 2023 SDCC

    • data.gov.ie
    Updated Jul 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2023). Traffic Flow Data Jan to June 2023 SDCC [Dataset]. https://data.gov.ie/dataset/traffic-flow-data-jan-to-june-2023-sdcc1
    Explore at:
    Dataset updated
    Jul 4, 2023
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDCC Traffic Congestion Saturation Flow Data for January to June 2023. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.

  4. P

    Traffic Dataset

    • paperswithcode.com
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Traffic Dataset [Dataset]. https://paperswithcode.com/dataset/traffic
    Explore at:
    Dataset updated
    Mar 13, 2024
    Description

    Abstract: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations.

    Data Set CharacteristicsNumber of InstancesAreaAttribute CharacteristicsNumber of AttributesDate DonatedAssociated TasksMissing Values
    Multivariate2101ComputerReal472020-11-17RegressionN/A

    Source: Liang Zhao, liang.zhao '@' emory.edu, Emory University.

    Data Set Information: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. For the detailed data information, please refer to the file README.docx.

    Attribute Information: The 47 features include: (1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), (2) week day (7 features), (3) hour of day (24 features), (4) road direction (4 features), (5) number of lanes (1 feature), and (6) name of the road (1 feature).

    Relevant Papers: Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

    Citation Request: To use these datasets, please cite the papers:

    Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

  5. Traffic Flow Data Jan to June 2022 SDCC - Dataset - data.gov.ie

    • data.gov.ie
    Updated Nov 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2022). Traffic Flow Data Jan to June 2022 SDCC - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/traffic-flow-data-jan-to-june-2022-sdcc1
    Explore at:
    Dataset updated
    Nov 7, 2022
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDCC Traffic Congestion Saturation Flow Data for January to June 2022. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.

  6. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  7. d

    Traffic signals and SCATS sites locations DCC

    • datasalsa.com
    csv, geojson, kml +1
    Updated Jan 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dublin City Council (2023). Traffic signals and SCATS sites locations DCC [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=traffic-signals-and-scats-sites-locations-dcc
    Explore at:
    zip, kml, geojson, csvAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset authored and provided by
    Dublin City Council
    Time period covered
    Jan 17, 2023
    Description

    Traffic signals and SCATS sites locations DCC. Published by Dublin City Council. Available under the license cc-by (CC-BY-4.0).Locations of junctions and pedestrian crossings with traffic lights and SCATS sites’ detectors within the Dublin City Council administrative area.

    SCATS – SCATS (Sydney Coordinated Adaptive Traffic System) is an adaptive urban traffic management system that synchronises traffic signals to optimise traffic flow across a whole city, region or corridor. Attributes:

    • SiteID : Site (signal and SCATS Site) identifier

    • Site_Description_Cap : Site description in capital letters

    • Site_Description_Lower: site description in lower case letters

    • Region: refers to SCATS regional servers

    • Lat: Geographic location (Latitude)

    • Long : Geographic location (Longitude)

    • Site_Type : Site type; it has two values: SCATS or Signal Site
    - SCATS means that both SCATS detectors and traffic signals (traffic lights) are present.
    - Signal Site value means that only traffic signals are present. ...

  8. Traffic signals and SCATS sites locations DCC - Dataset - data.gov.ie

    • data.gov.ie
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie, Traffic signals and SCATS sites locations DCC - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/traffic-signals-and-scats-sites-locations-dcc
    Explore at:
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SiteID : Site (signal and SCATS Site) identifier Site_Description_Cap : Site description in capital letters Site_Description_Lower: site description in lower case letters Region: refers to SCATS regional servers Lat: Geographic location (Latitude) Long : Geographic location (Longitude) Site_Type : Site type; it has two values: SCATS or Signal Site SCATS means that both SCATS detectors and traffic signals (traffic lights) are present.

  9. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    Liechtenstein, Russian Federation, India, Uzbekistan, Belarus, Jamaica, Latvia, Saint Vincent and the Grenadines, Jordan, Monaco
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  10. d

    Chicago Traffic Tracker - Congestion Estimates by Segments

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Chicago Traffic Tracker - Congestion Estimates by Segments [Dataset]. https://catalog.data.gov/dataset/chicago-traffic-tracker-congestion-estimates-by-segments
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  11. Internet Traffic Data Set

    • kaggle.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asfand Yar (2023). Internet Traffic Data Set [Dataset]. http://doi.org/10.34740/kaggle/dsv/5658579
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 10, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Asfand Yar
    Description

    This data set contains internet traffic data captured by an Internet Service Provider (ISP) using Mikrotik SDN Controller and packet sniffer tools. The data set includes traffic from over 2000 customers who use Fibre to the Home (FTTH) and Gpon internet connections. The data was collected over a period of several months and contains all traffic in its original format with headers and packets.

    The data set contains information on inbound and outbound traffic, including web browsing, email, file transfers, and more. The data set can be used for research in areas such as network security, traffic analysis, and machine learning.

    **Data Collection Method: ** The data was captured using Mikrotik SDN Controller and packet sniffer tools. These tools capture traffic data by monitoring network traffic in real-time. The data set contains all traffic data in its original format, including headers and packets.

    **Data Set Content: ** The data set is provided in a CSV format and includes the following fields:

    1. Timestamp: The date and time the traffic was captured
    2. Source IP Address: The IP address of the device that sent the traffic Destination IP Address: The IP address of the device that received the traffic Protocol: The network protocol used for the traffic (e.g. TCP, UDP) Source Port: The port used by the source device for the traffic Destination Port: The port used by the destination device for the traffic Packet Size: The size of the packet in bytes Payload: The payload data of the packet The data set contains a large volume of traffic data from over 2000 customers. The data is organized by timestamp and includes all traffic data in its original format, including headers and packets. The data set contains both inbound and outbound traffic, and covers various types of internet traffic, including web browsing, email, file transfers, and more. one of listed protocols: ipsec-ah - IPsec AH protocol *ipsec-esp - IPsec ESP protocol ddp - datagram delivery protocol egp - exterior gateway protocol ggp - gateway-gateway protocol gre - general routing encapsulation hmp - host monitoring protocol idpr-cmtp - idpr control message transport icmp - internet control message protocol icmpv6 - internet control message protocol v6 igmp - internet group management protocol ipencap - ip encapsulated in ip ipip - ip encapsulation encap - ip encapsulation iso-tp4 - iso transport protocol class 4 ospf - open shortest path first pup - parc universal packet protocol pim - protocol independent multicast rspf - radio shortest path first rdp - reliable datagram protocol st - st datagram mode tcp - transmission control protocol udp - user datagram protocol vmtp - versatile message transport vrrp - virtual router redundancy protocol xns-idp - xerox xns idp xtp - xpress transfer protocol

    MAC Protocol Examples 802.2 - 802.2 Frames (0x0004) arp - Address Resolution Protocol (0x0806) homeplug-av - HomePlug AV MME (0x88E1) ip - Internet Protocol version 4 (0x0800) ipv6 - Internet Protocol Version 6 (0x86DD) ipx - Internetwork Packet Exchange (0x8137) lldp - Link Layer Discovery Protocol (0x88CC) loop-protect - Loop Protect Protocol (0x9003) mpls-multicast - MPLS multicast (0x8848) mpls-unicast - MPLS unicast (0x8847) packing-compr - Encapsulated packets with compressed IP packing (0x9001) packing-simple - Encapsulated packets with simple IP packing (0x9000) pppoe - PPPoE Session Stage (0x8864) pppoe-discovery - PPPoE Discovery Stage (0x8863) rarp - Reverse Address Resolution Protocol (0x8035) service-vlan - Provider Bridging (IEEE 802.1ad) & Shortest Path Bridging IEEE 802.1aq (0x88A8) vlan - VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq with NNI compatibility (0x8100)

    **Data Usage: ** The data set can be used for research in areas such as network security, traffic analysis, and machine learning. Researchers can use the data to develop new algorithms for detecting and preventing cyber attacks, analyzing internet traffic patterns, and more.

    **Data Availability: ** If you are interested in using this data set for research purposes, please contact us at asfandyar250@gmail.com for more information and references. The data set is available for download on Kaggle and can be accessed by researchers who have obtained permission from the ISP.

    We hope this data set will be useful for researchers in the field of network security and traffic analysis. If you have any questions or need further information, please do not hesitate to contact us. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5985737%2F61c81ce9eb393f8fc7c15540c9819b95%2FData.PNG?generation=1683750473536727&alt=media" alt=""> You can use Wireshark or other software's to view files

  12. s

    Traffic Congestion Saturation Flow Data 2019 SDCC - Dataset -...

    • data.smartdublin.ie
    Updated Oct 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Traffic Congestion Saturation Flow Data 2019 SDCC - Dataset - data.smartdublin.ie [Dataset]. https://data.smartdublin.ie/dataset/traffic-congestion-saturation-flow-data-2019-sdcc1
    Explore at:
    Dataset updated
    Oct 30, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDCC Traffic Congestion Saturation Flow Data 2019. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.

  13. f

    Data from: Real-world sensor dataset for city inbound-outbound critical...

    • figshare.com
    rar
    Updated May 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ei Ei Mon; Hideya Ochiai; Patrachart Komolkiti; Chaodit Aswakul (2022). Real-world sensor dataset for city inbound-outbound critical intersection analysis [Dataset]. http://doi.org/10.6084/m9.figshare.14643411.v1
    Explore at:
    rarAvailable download formats
    Dataset updated
    May 28, 2022
    Dataset provided by
    figshare
    Authors
    Ei Ei Mon; Hideya Ochiai; Patrachart Komolkiti; Chaodit Aswakul
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sathorn Model is a project that has attempted to find a sustainable solution for traffic congestion problems in the Sathorn area, Bangkok. The activities are managed by the Faculty of Engineering, Chulalongkorn University. Sathorn Road serves as the gateway linking the residential area on the western side of the Chao Phraya River and the river-eastern side's business area. As a result, up to 150,000 vehicles drive every weekday on Sathorn Road. The Sathorn-Surasak intersection has both inbound and outbound traffic flow. There are a total of three types of sensors installed on the approaching lanes of the Sathorn-Surasak intersection in the Sathorn area: CCTV cameras, thermal cameras and induction loop coil sensors. Traffic volume data are collected every 5 s from CCTV sensors for 37 months from September 2016 to September 2019. Traffic volume and occupancy are collected every 5 s from loop coil sensors for 110 days from May 2016 to September 2016. Also, traffic volume and occupancy are collected every 5 s from thermal cameras for 26 days from May 30, 2016 to June 24, 2016. The dataset has temporal and spatial coverage of Sathorn road's main urban areas, including weekdays, weekends, and public and national holidays.

  14. Traffic Anomaly Dataset (TAD)

    • kaggle.com
    Updated Apr 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nikan vasei (2025). Traffic Anomaly Dataset (TAD) [Dataset]. https://www.kaggle.com/datasets/nikanvasei/traffic-anomaly-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    nikan vasei
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is designed for traffic surveillance anomaly detection, originally from the WSAL (Weakly-Supervised Anomaly Localization) repository. It consists of 500 short video clips totaling approximately 25 hours of footage. Each clip averages around 1,075 frames, and anomalies, when present, typically span around 80 frames.

    • Number of videos: 500
      • Abnormal videos: 250
      • Normal videos: 250
    • Average duration (frames) per clip: ~1,075
    • Average anomaly length (frames): ~80
    • Total duration: ~25 hours
    • Partition:
      • Training set: 400 videos
      • Test set: 100 videos

    Each video is labeled to indicate whether it contains an anomaly or not, enabling both supervised training and evaluation. You can use the labels to develop or compare different anomaly detection methods.

    Citation

    If you use this dataset for your research, please cite the following paper:

    @article{wsal_tip21,
     author  = {Hui Lv and
            Chuanwei Zhou and
            Zhen Cui and
            Chunyan Xu and
            Yong Li and
            Jian Yang},
     title   = {Localizing Anomalies from Weakly-Labeled Videos},
     journal  = {IEEE Transactions on Image Processing (TIP)},
     year   = {2021}
    }
    

    For more details about how the dataset was created and used, see the original WSAL GitHub repository.

  15. C

    City of Pittsburgh Traffic Count

    • data.wprdc.org
    • datasets.ai
    csv, geojson
    Updated Jun 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2024). City of Pittsburgh Traffic Count [Dataset]. https://data.wprdc.org/dataset/traffic-count-data-city-of-pittsburgh
    Explore at:
    csv, geojson(421434)Available download formats
    Dataset updated
    Jun 9, 2024
    Dataset provided by
    City of Pittsburgh
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Pittsburgh
    Description

    This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH.

    Data is currently available for only the most-recent count at each location.

    Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds.

    Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests.

    Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles.

    Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data.

    NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.

  16. d

    Bluetooth Travel Sensors - Individual Traffic Match Files (ITMF)

    • catalog.data.gov
    • datahub.austintexas.gov
    • +3more
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). Bluetooth Travel Sensors - Individual Traffic Match Files (ITMF) [Dataset]. https://catalog.data.gov/dataset/bluetooth-travel-sensors-individual-traffic-match-files-itmf
    Explore at:
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    data.austintexas.gov
    Description

    For information about the City of Austin's Bluetooth travel sensor data, visit our documentation page: https://github.com/cityofaustin/hack-the-traffic/tree/master/docs Each row in this dataset represents one Bluetooth enabled device that detected at two locations in the City of Austin's Bluetooth sensor network. Each record contains a detected device’s anonymized Media Access Control (MAC) address along with contain information about origin and destination points at which the device was detected, as well the time, date, and distance traveled. How does the City of Austin use the Bluetooth travel sensor data? The data enables transportation engineers to better understand short and long-term trends in Austin’s traffic patterns, supporting decisions about systems planning and traffic signal timing. What information does the data contain? The sensor data is available in three datasets: Individual Address Records ( https://data.austintexas.gov/dataset/Bluetooth-Travel-Sensors-Individual-Addresses/qnpj-zrb9/data ) Each row in this dataset represents a Bluetooth device that was detected by one of our sensors. Each record contains a detected device’s anonymized Media Access Control (MAC) address along with the time and location the device was detected. These records alone are not traffic data but can be post-processed to measure the movement of detected devices through the roadway network Individual Traffic Matches ( https://data.austintexas.gov/dataset/Bluetooth-Travel-Sensors-Individual-Traffic-Matche/x44q-icha/data ) Each row in this dataset represents one Bluetooth enabled device that detected at two locations in the roadway network. Each record contains a detected device’s anonymized Media Access Control (MAC) address along with contain information about origin and destination points at which the device was detected, as well the time, date, and distance traveled. Traffic Summary Records ( https://data.austintexas.gov/dataset/Bluetooth-Travel-Sensors-Match-Summary-Records/v7zg-5jg9 ) The traffic summary records contain aggregate travel time and speed summaries based on the individual traffic match records. Each row in the dataset summarizes average travel time and speed along a sensor-equipped roadway segment in 15 minute intervals. Does this data contain personally identifiable information? No. The Media Access Control (MAC) addresses in these datasets are randomly generated.

  17. v

    Traffic Volume

    • opendata.victoria.ca
    • open-vicmap.opendata.arcgis.com
    Updated May 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Victoria (2021). Traffic Volume [Dataset]. https://opendata.victoria.ca/datasets/traffic-volume
    Explore at:
    Dataset updated
    May 6, 2021
    Dataset authored and provided by
    City of Victoria
    License

    https://opendata.victoria.ca/pages/open-data-licencehttps://opendata.victoria.ca/pages/open-data-licence

    Area covered
    Description

    Traffic Volume (24hr count). Data are updated as needed by the Transportation department (typically in the summer), and subsequently copied to VicMap and the Open Data Portal the following day.Traffic speed and volume data are collected at various locations around the city, from different locations each year, using a variety of technologies and manual counting. Counters are placed on streets and at intersections, typically for 24-hour periods. Targeted information is also collected during morning or afternoon peak period travel times and can also be done for several days at a time to capture variability on different days of the week. The City collects data year-round and in all types of weather (except for extreme events like snowstorms). The City also uses data from our agency partners like Victoria Police, the CRD or ICBC. Speed values recorded at each location represent the 85th percentile speed, which means 85% or less traffic travels at that speed. This is standard practice among municipalities to reduce anomalies due to excessively speedy or excessively slow drivers. Values recorded are based on the entire 24-hour period.The Traffic Volume dataset is linear. The lines can be symbolized using arrows and the "Direction" attribute. Where the direction value is "one", use an arrow symbol where the arrow is at the end of the line. Where the direction value is "both", use an arrow symbol where there are arrows at both ends of the line. Use the "Label" field to add labels. The label field indicates the traffic volume at each location, and the year the data was collected. So for example, “2108(05)” means 2108 vehicles were counted in the year 2005 at that location.Data are automatically copied to the Open Data Portal. The "Last Updated" date shown on our Open Data Portal refers to the last time the data schema was modified in the portal, or any changes were made to this description. We update our data through automated scripts which does not trigger the "last updated" date to change. Note: Attributes represent each field in a dataset, and some fields will contain information such as ID numbers. As a result some visualizations on the tabs on our Open Data page will not be relevant.

  18. O

    Bluetooth Travel Sensors -Traffic Match Summary Records (TMSR)

    • data.austintexas.gov
    • datahub.austintexas.gov
    • +5more
    application/rdfxml +5
    Updated Dec 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin, Texas - data.austintexas.gov (2021). Bluetooth Travel Sensors -Traffic Match Summary Records (TMSR) [Dataset]. https://data.austintexas.gov/Transportation-and-Mobility/Bluetooth-Travel-Sensors-Traffic-Match-Summary-Rec/v7zg-5jg9
    Explore at:
    json, csv, xml, application/rdfxml, application/rssxml, tsvAvailable download formats
    Dataset updated
    Dec 22, 2021
    Dataset authored and provided by
    City of Austin, Texas - data.austintexas.gov
    Description

    View the Complete Dataset documentation on Github: https://github.com/cityofaustin/hack-the-traffic/tree/master/docs

    This dataset contains aggregate travel time and speed summaries based on the individual traffic match records from the City of Austin's Bluetooth travel sensors.. Each row in the dataset summarizes average travel time and speed along a sensor-equipped roadway segment in 15 minute intervals.

    How does the City of Austin use the Bluetooth travel sensor data? The data enables transportation engineers to better understand short and long-term trends in Austin’s traffic patterns, supporting decisions about systems planning and traffic signal timing.

    What information does the data contain? The sensor data is available in three datasets:

    Individual Address Records ( https://data.austintexas.gov/dataset/Bluetooth-Travel-Sensors-Individual-Addresses/qnpj-zrb9/data ) Each row in this dataset represents a Bluetooth device that was detected by one of our sensors. Each record contains a detected device’s anonymized Media Access Control (MAC) address along with the time and location the device was detected. These records alone are not traffic data but can be post-processed to measure the movement of detected devices through the roadway network

    Individual Traffic Matches ( https://data.austintexas.gov/dataset/Bluetooth-Travel-Sensors-Individual-Traffic-Matche/x44q-icha/data ) Each row in this dataset represents one Bluetooth enabled device that detected at two locations in the roadway network. Each record contains a detected device’s anonymized Media Access Control (MAC) address along with contain information about origin and destination points at which the device was detected, as well the time, date, and distance traveled.

    Traffic Summary Records ( https://data.austintexas.gov/dataset/Bluetooth-Travel-Sensors-Match-Summary-Records/v7zg-5jg9 ) The traffic summary records contain aggregate travel time and speed summaries based on the individual traffic match records. Each row in the dataset summarizes average travel time and speed along a sensor-equipped roadway segment in 15 minute intervals.

    Does this data contain personally identifiable information? No. The Media Access Control (MAC) addresses in these datasets are randomly generated.

  19. A

    Traffic-Related Data

    • data.boston.gov
    html, pdf
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Transportation Department (2021). Traffic-Related Data [Dataset]. https://data.boston.gov/dataset/traffic-related-data
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    Boston Transportation Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.

    ~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.

    ~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.

    ~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.

  20. US Automatic Traffic Recorder Stations Data

    • kaggle.com
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Automatic Traffic Recorder Stations Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-automatic-traffic-recorder-stations-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Description

    US Automatic Traffic Recorder Stations Data

    Vehicle Traffic Counts and Locations at US ATR Stations

    By Homeland Infrastructure Foundation [source]

    About this dataset

    This comprehensive dataset records important information about Automatic Traffic Recorder (ATR) Stations located across the United States. ATR stations play a crucial role in traffic management and planning by continuously monitoring and counting the number of vehicles passing through each station.

    The data contained in this dataset has been meticulously gathered from station description files supplied by the Federal Highway Administration (FHWA) for both Weigh-in-Motion (WIM) devices and Automatic Traffic Recorders. In addition to this, location referencing data was sourced from the National Highway Planning Network version 4.0 as well as individual State offices of Transportation.

    The database includes essential attributes such as a unique identifier for each ATR station, indicated by 'STTNKEY'. It also indicates if a site is part of the National Highway System, denoted under 'NHS'. Other key aspects recorded include specific locations generally named after streets or highways under 'LOCATION', along with relevant comments providing additional context in 'COMMENT'.

    Perhaps one of the most critical factors noted in this data set would be traffic volume at each location, measured by Annual Average Daily Traffic ('AADT'). This metric represents total vehicle flow on roads or highways for a year divided over 365 days — an essential numeric analyst's often call upon when making traffic-related predictions or decisions.

    Location coordinates incorporating longitude and latitude measurements of every ATR station are documented clearly — aiding geospatial analysis. Furthermore, X and Y coordinates correspond to these locations facilitating accurate map plotting.

    Additional information contained also includes postal codes labeled as 'STPOSTAL' where stations are located with respective state FIPS codes indicated under ‘STFIPS’. County specific FIPS code are documented within ‘CTFIPS’. Versioning information helps users track versions ensuring they work off latest datasets with temporal geographic attribute updates captured via ‘YEAR_GEO’.

    Reference Source: Click Here

    How to use the dataset

    Introduction

    Diving into the data

    The dataset comprises a collection of attributes for each station such as its location details (latitude, longitude), AADT or The Annual Average Daily Traffic amount, classification of road where it's located etc. Additionally, there is information related to when was this geographical information last updated.

    Understanding Columns

    Here's what primary columns represent: - Sttnkey: A unique identifier for each station. - NHS: Indicates if the station is part of national highway system. - Location: Describes specific location of a station with street or highway name. - Comment: Any additional remarks related to that station. - Longitude,Latitude: Geographic coordinates. - STPostal: The postal code where a given station resides. - menu 4 dots indicates show more items** - ADT: Annual Average Daily Traffic count indicating average volume of vehicles passing through that route annually divided by 365 days - Year_GEO: The year when geographic information was last updated - can provide insight into recency or timeliness of recorded attribute values - Fclass: Road classification i.e interstate,dis,e tc., providing context about type/stature/importance or natureof theroad on whichstationlies 11.Stfips,Ctfips- FIPS codes representing state,county respectively

    Using this information

    Given its structure and contents,thisdatasetisveryusefulforanumberofpurposes:

    1.Urban Planning & InfrastructureDevelopment Understanding traffic flows and volumes can be instrumental in deciding where to build new infrastructure or improve existing ones. Planners can identify high traffic areas needing more robust facilities.

    2.Traffic Management & Policies Analysing chronological changes and patterns of traffic volume, local transportation departments can plan out strategic time-based policies for congestion management.

    3.Residential/CommercialRealEstateDevelopment Real estate developers can use this data to assess the appeal of a location based on its accessibility i.e whether it sits on high-frequency route or is located in more peaceful, low-traffic areas etc

    4.Environmental AnalysisResearch: Re...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hamilton City Council (2021). Traffic Site [Dataset]. https://hub.arcgis.com/maps/hcc::traffic-site

Traffic Site

Explore at:
Dataset updated
Sep 9, 2021
Dataset authored and provided by
Hamilton City Council
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Attributes of sites in Hamilton City which collect anonymised data from a sample of vehicles. Note: A Link is the section of the road between two sites

Column_InfoSite_Id, int : Unique identiferNumber, int : Asset number. Note: If the site is at a signalised intersection, Number will match 'Site_Number' in the table 'Traffic Signal Site Location'Is_Enabled, varchar : Site is currently enabledDisabled_Date, datetime : If currently disabled, the date at which the site was disabledSite_Name, varchar : Description of the site locationLatitude, numeric : North-south geographic coordinatesLongitude, numeric : East-west geographic coordinates

Relationship









Disclaimer

Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.

Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.

While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:

‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
Search
Clear search
Close search
Google apps
Main menu