Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset consists of the top 50 most visited websites in the world, as well as the category and principal country/territory for each site. The data provides insights into which sites are most popular globally, and what type of content is most popular in different parts of the world
This dataset can be used to track the most popular websites in the world over time. It can also be used to compare website popularity between different countries and categories
- To track the most popular websites in the world over time
- To see how website popularity changes by region
- To find out which website categories are most popular
Dataset by Alexa Internet, Inc. (2019), released on Kaggle under the Open Data Commons Public Domain Dedication and License (ODC-PDDL)
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: df_1.csv | Column name | Description | |:--------------------------------|:---------------------------------------------------------------------| | Site | The name of the website. (String) | | Domain Name | The domain name of the website. (String) | | Category | The category of the website. (String) | | Principal country/territory | The principal country/territory where the website is based. (String) |
Facebook
TwitterPsychological scientists increasingly study web data, such as user ratings or social media postings. However, whether research relying on such web data leads to the same conclusions as research based on traditional data is largely unknown. To test this, we (re)analyzed three datasets, thereby comparing web data with lab and online survey data. We calculated correlations across these different datasets (Study 1) and investigated identical, illustrative research questions in each dataset (Studies 2 to 4). Our results suggest that web and traditional data are not fundamentally different and usually lead to similar conclusions, but also that it is important to consider differences between data types such as populations and research settings. Web data can be a valuable tool for psychologists when accounting for such differences, as it allows for testing established research findings in new contexts, complementing them with insights from novel data sources.
Facebook
TwitterMonthly site compare scripts and output used to generate the model/ob plots and statistics in the manuscript. The AQS hourly site compare output files are not included as they were too large to store on ScienceHub. The files contain paired model/ob values for the various air quality networks. This dataset is associated with the following publication: Appel, W., S. Napelenok, K. Foley, H. Pye, C. Hogrefe, D. Luecken, J. Bash, S. Roselle, J. Pleim, H. Foroutan, B. Hutzell, G. Pouliot, G. Sarwar, K. Fahey, B. Gantt, D. Kang, R. Mathur, D. Schwede, T. Spero, D. Wong, J. Young, and N. Heath. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geoscientific Model Development. Copernicus Publications, Katlenburg-Lindau, GERMANY, 10: 1703-1732, (2017).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset offers a detailed comparison of key global players like USA, Russia, China, India, Canada, Australia, and others across various economic, social, and environmental metrics. By comparing countries on indicators such as GDP, population, healthcare access, education levels, internet penetration, military spending, and much more, this dataset provides valuable insights for researchers, policymakers, and analysts.
🔍 Key Comparisons:
Economic Indicators: GDP, inflation rates, unemployment rates, etc. Social Indicators: Literacy rates, healthcare quality, life expectancy, etc. Environmental Indicators: CO2 emissions, renewable energy usage, protected areas, etc. Technological Advancements: Internet users, mobile subscriptions, tech exports, etc. Military Spending: Defense budgets, military personnel numbers, etc. This dataset is perfect for those who want to compare countries in terms of development, growth, and global standing. It can be used for data analysis, policy planning, research, and even education.
✨ Key Features:
Comprehensive Coverage: Includes multiple countries with key metrics. Multiple Domains: Economic, social, environmental, technological, and military data. Up-to-date Information: Covers data from the last decade to provide recent insights. Research Ready: Suitable for academic research, visualizations, and analysis.
Facebook
TwitterThe current dataset is consisted of 200 search results extracted from Google and Bing engines (100 of Google and 100 of Bing). The search terms are selected from the 10 most search keywords of 2021 based on the provided data of Google Trends. The rest of the sheets include the performance of the websites according to three technical evaluation aspects. That is, SEO, Speed and Security. The performance dataset has been developed through the utilization of CheckBot crawling tool. The whole dataset can help information retrieval scientists to compare the two engines in terms of their position/ranking and their performance related to these factors.
For more information about the thinking of the of the structure of the dataset please contact the Information Management Lab of University of West Attica.
Contact Persons: Vasilis Ntararas (lb17032@uniwa.gr) , Georgios Ntimo (lb17100@uniwa.gr) and Ioannis C. Drivas (idrivas@uniwa.gr)
Facebook
TwitterThis dataset is a real-world web page collection used for research on the automatic extraction of structured data (e.g., attribute-value pairs of entities) from the Web. We hope it could serve as a useful benchmark for evaluating and comparing different methods for structured web data extraction.
Facebook
TwitterNursing Home Compare has detailed information about every Medicare and Medicaid nursing home in the country. A nursing home is a place for people who can’t be cared for at home and need 24-hour nursing care. These are the official datasets used on the Medicare.gov Nursing Home Compare Website provided by the Centers for Medicare & Medicaid Services. These data allow you to compare the quality of care at every Medicare and Medicaid-certified nursing home in the country, including over 15,000 nationwide.
Facebook
TwitterHow prevalent is sports betting across the United States? This dataset provides information on the legal status of sports betting, revenue generated by sports betting, the number of sports betting outlets, and more. Use this dataset to compare the revenue generated by sports betting across different states
This dataset can be used to understand the prevalence of sports betting across the United States and to compare the revenue generated by sports betting across states.
File: New Jersey.csv | Column name | Description | |:------------------|:--------------------------------------------------------------| | date | The date of the data. (Date) | | New Jersey | The amount of money bet on sports in New Jersey. (Numeric) | | Pennsylvania | The amount of money bet on sports in Pennsylvania. (Numeric) | | Delaware | The amount of money bet on sports in Delaware. (Numeric) | | Mississippi | The amount of money bet on sports in Mississippi. (Numeric) | | Nevada | The amount of money bet on sports in Nevada. (Numeric) | | Rhode Island | The amount of money bet on sports in Rhode Island. (Numeric) | | West Virginia | The amount of money bet on sports in West Virginia. (Numeric) | | Arkansas | The amount of money bet on sports in Arkansas. (Numeric) | | New York | The amount of money bet on sports in New York. (Numeric) | | Iowa | The amount of money bet on sports in Iowa. (Numeric) | | Indiana | The amount of money bet on sports in Indiana. (Numeric) | | Oregon | The amount of money bet on sports in Oregon. (Numeric) | | New Hampshire | The amount of money bet on sports in New Hampshire. (Numeric) | | Michigan | The amount of money bet on sports in Michigan. (Numeric) | | Montana | The amount of money bet on sports in Montana. (Numeric) | | Colorado | The amount of money bet on sports in Colorado. (Numeric) | | Washington DC | The amount of money bet on sports in Washington DC. (Numeric) | | Illinois | The amount of money bet on sports in Illinois. (Numeric) | | Tennessee | The amount of money bet on sports in Tennessee. (Numeric) |
File: PopulationStates.csv | Column name | Description | |:--------------|:----------------------------------------------------| | State | The state in which the data was collected. (String) |
File: homeless.csv | Column name | Description | |:----------------|:----------------------------------------------------| | year | The year the data was collected. (Integer) | | unsheltered | The number of people who are unsheltered. (Integer) |
File: income.csv | Column name | Description | |:------------------|:--------------------------------------------------------------| | Pennsylvania | The amount of money bet on sports in Pennsylvania. (Numeric) | | Delaware | The amount of money bet on sports in Delaware. (Numeric) | | Mississippi | The amount of money bet on sports in Mississippi. (Numeric) | | Nevada | The amount of money bet on sports in Nevada. (Numeric) | | Rhode Island | The amount of money bet on sports in Rhode Island. (Numeric) | | West Virginia | The amount of money bet on sports in West Virginia. (Numeric) | | Arkansas | The amount of money bet on sports in Arkansas. (Numeric) | | New York | The amount of money bet on sports in New York. (Numeric) | | Iowa | The amount of money bet on sports in Iowa. (Numeric) | | Indiana | The amount of money bet on sports in Indiana. (Numeric) | | New Hampshire | The amount of money bet on sports in New Hampshire. (Numeric) | | Michigan | The amount of money bet on sports in Michigan. (Numeric) | | Colorado | The amount of money bet on sports in Colorado. (Numeric) | | Washington DC | The amount of money bet on sports in Washington DC. (Numeric) | | Illinois | The amount of money bet on sports in Illinois. (Nume...
Facebook
TwitterThis is a dataset created for use by the DQ Atlas website, and is not intended for use outside that application. For more information on the DQ Atlas and the information contained in this dataset see https://www.medicaid.gov/dq-atlas/welcome
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
MedQuAD Dataset (11 medical websites via XML files). MedQuAD (Medical Question Answering Dataset), released by the U.S. National Library of Medicine (NLM). The dataset contains approximately 47,000 question–answer pairs, covering symptoms, causes, diagnosis, treatment, prevention, prognosis, and follow-up, each paired with authoritative answers from NIH/NLM websites. Domain: Biomedical / Healthcare. It spans multiple diseases, conditions, and treatments, suitable for training a general-purpose medical QA system. • Each file contains multiple
Facebook
TwitterThis online application gives manufacturers the ability to compare Iowa to other states on a number of different topics including: business climate, education, operating costs, quality of life and workforce.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 162 verified SmarterHome.ai - Compare Local Internet Deals locations in United States with complete contact information, ratings, reviews, and location data.
Facebook
Twitterhttps://www.nist.gov/open/licensehttps://www.nist.gov/open/license
Data for multi-site, multi-platform comparison of magnetic resonance imaging (MRI) T1 measurement using the International Society of Magnetic Resonance in Medicine/National Institute of Standards and Technology (ISMRM/NIST) system phantom. Includes data sets for T1 measurement by inversion recovery (IR) and variable flip angle (VFA) methods at 1.5 tesla and 3 tesla. At 1.5 T, data is from 2 different vendor systems, 9 total MRI machines. At 3 T, data is from 3 different vendor systems, 18 total MRI machines.
Facebook
TwitterThe Urban Observatory Compare app shows maps of the same subject for three cities, in a side by side comparison view. The app allows quick visual comparisons of the patterns at work in cities around the world.The app allows people to interact with rich datasets for each city. People can use the Urban Observatory web application to easily compare cities by using a simple web browser. As a user zooms in to one digital city map, other city maps will zoom in parallel, revealing similarities and differences in density and distribution. For instance, a person can simultaneously view traffic density for Abu Dhabi and Paris or simultaneously view vegetation in London and Tokyo.The Urban Observatory is brought to you by Richard Saul Wurman, creator of Technology/Entertainment/Design (TED) and 19.20.21; Jon Kamen of the Academy Award-, Emmy Award-, and Golden Globe Award-winning film company @radical.media; and Esri president Jack Dangermond. "A map is a pattern made understandable, and patterns must be compared to understand successes, failures, and opportunities of our global cities," says Wurman. "The Urban Observatory demonstrates this new paradigm, using cartographic language and constructive data display. People and cities can use maps as a common language," said Wurman. The application utilizes Esri's ArcGIS API for JavaScript. Once a web map is created, it is added to a group and tagged to indicated its city and subject information. Those tags are read by the application as it starts up in the browser.
Facebook
TwitterCMAQv5.1 with a new dust module IMPROVE sitex files containing 24-hr (every 3rd day) paired model/ob data for the IMPROVE network. This dataset is associated with the following publication: Foroutan, H., J. Young, S. Napelenok, L. Ran, W. Appel, R. Gilliam, and J. Pleim. Development and evaluation of a physics-based windblown dust emission scheme implemented in the CMAQ modeling system. Journal of Advances in Modeling Earth Systems. John Wiley & Sons, Inc., Hoboken, NJ, USA, 9(1): 585-608, (2017).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 6 verified SmarterHome.ai - Compare Local Internet Deals locations in Alabama, United States with complete contact information, ratings, reviews, and location data.
Facebook
TwitterComparison of open-access web-resources that mine FDA Adverse Events data.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Compiled in mid-2022, this dataset contains the raw data file, randomized ranked lists of R1 and R2 research institutions, and files created to support data visualization for Elizabeth Szkirpan's 2022 study regarding availability of data services and research data information via university libraries for online users. Files are available in Microsoft Excel formats.
Facebook
TwitterBest virtual data rooms 2024 dataset is created to provide the data room users and M&A specialists with detailed information on the best virtual data rooms. The dataset contains the descriptions of each dataroom solution and their ratings.
Facebook
TwitterThe Federal/State Tribal Data Comparison web map can be used to compare the reservation boundaries that appear on the Minnesota State Highway Map with the U.S. Census Bureau reservation boundaries. This map also shows off-reservation trust land owned by tribes. The map is for informational purposes only. It is not a land survey and does not contain coordinate correct data. Boundaries are not recognition, endorsement, or acceptance by MnDOT or the State of Minnesota.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset consists of the top 50 most visited websites in the world, as well as the category and principal country/territory for each site. The data provides insights into which sites are most popular globally, and what type of content is most popular in different parts of the world
This dataset can be used to track the most popular websites in the world over time. It can also be used to compare website popularity between different countries and categories
- To track the most popular websites in the world over time
- To see how website popularity changes by region
- To find out which website categories are most popular
Dataset by Alexa Internet, Inc. (2019), released on Kaggle under the Open Data Commons Public Domain Dedication and License (ODC-PDDL)
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: df_1.csv | Column name | Description | |:--------------------------------|:---------------------------------------------------------------------| | Site | The name of the website. (String) | | Domain Name | The domain name of the website. (String) | | Category | The category of the website. (String) | | Principal country/territory | The principal country/territory where the website is based. (String) |