100+ datasets found
  1. d

    Open Data Website Traffic

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.lacity.org
    Description

    Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

  2. g

    Website Traffic Dataset

    • gts.ai
    json
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 23, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

  3. d

    Website Analytics

    • catalog.data.gov
    • data.brla.gov
    • +2more
    Updated Jul 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5
    Explore at:
    Dataset updated
    Jul 26, 2025
    Dataset provided by
    data.brla.gov
    Description

    Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

  4. o

    Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values)

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Jun 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakshitha Godahewa; Christoph Bergmeir; Geoff Webb (2020). Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values) [Dataset]. http://doi.org/10.5281/zenodo.3898473
    Explore at:
    Dataset updated
    Jun 13, 2020
    Authors
    Rakshitha Godahewa; Christoph Bergmeir; Geoff Webb
    Description

    This dataset was used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10. The original dataset contains missing values. They have been simply replaced by zeros. {"references": ["Google, 2017. Web traffic time series forecasting. URL https://www.kaggle.com/c/web-traffic-time-series-forecasting"]}

  5. A

    ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-popular-website-traffic-over-time-62e4/62549059/?iid=003-357&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Background

    Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.

    Methodology

    The data collected originates from SimilarWeb.com.

    Source

    For the analysis and study, go to The Concept Center

    This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.

    How to use this dataset

    • Analyze 11/1/2016 in relation to 2/1/2017
    • Study the influence of 4/1/2017 on 1/1/2017
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Chase Willden

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  6. Network traffic datasets created by Single Flow Time Series Analysis

    • zenodo.org
    • explore.openaire.eu
    • +1more
    csv, pdf
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Koumar; Josef Koumar; Karel Hynek; Karel Hynek; Tomáš Čejka; Tomáš Čejka (2024). Network traffic datasets created by Single Flow Time Series Analysis [Dataset]. http://doi.org/10.5281/zenodo.8035724
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Josef Koumar; Josef Koumar; Karel Hynek; Karel Hynek; Tomáš Čejka; Tomáš Čejka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Network traffic datasets created by Single Flow Time Series Analysis

    Datasets were created for the paper: Network Traffic Classification based on Single Flow Time Series Analysis -- Josef Koumar, Karel Hynek, Tomáš Čejka -- which was published at The 19th International Conference on Network and Service Management (CNSM) 2023. Please cite usage of our datasets as:

    J. Koumar, K. Hynek and T. Čejka, "Network Traffic Classification Based on Single Flow Time Series Analysis," 2023 19th International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023, pp. 1-7, doi: 10.23919/CNSM59352.2023.10327876.

    This Zenodo repository contains 23 datasets created from 15 well-known published datasets which are cited in the table below. Each dataset contains 69 features created by Time Series Analysis of Single Flow Time Series. The detailed description of features from datasets is in the file: feature_description.pdf

    In the following table is a description of each dataset file:

    File nameDetection problemCitation of original raw dataset
    botnet_binary.csv Binary detection of botnet S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014.
    botnet_multiclass.csv Multi-class classification of botnet S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014.
    cryptomining_design.csvBinary detection of cryptomining; the design part Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022
    cryptomining_evaluation.csv Binary detection of cryptomining; the evaluation part Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022
    dns_malware.csv Binary detection of malware DNS Samaneh Mahdavifar et al. Classifying Malicious Domains using DNS Traffic Analysis. In DASC/PiCom/CBDCom/CyberSciTech 2021, pages 60–67. IEEE, 2021.
    doh_cic.csv Binary detection of DoH

    Mohammadreza MontazeriShatoori et al. Detection of doh tunnels using time-series classification of encrypted traffic. In DASC/PiCom/CBDCom/CyberSciTech 2020, pages 63–70. IEEE, 2020

    doh_real_world.csv Binary detection of DoH Kamil Jeřábek et al. Collection of datasets with DNS over HTTPS traffic. Data in Brief, 42:108310, 2022
    dos.csv Binary detection of DoS Nickolaos Koroniotis et al. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst., 100:779–796, 2019.
    edge_iiot_binary.csv Binary detection of IoT malware Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022.
    edge_iiot_multiclass.csvMulti-class classification of IoT malwareMohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022.
    https_brute_force.csvBinary detection of HTTPS Brute ForceJan Luxemburk et al. HTTPS Brute-force dataset with extended network flows, November 2020
    ids_cic_binary.csvBinary detection of intrusion in IDSIman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018.
    ids_cic_multiclass.csv Multi-class classification of intrusion in IDS Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018.
    ids_unsw_nb_15_binary.csv Binary detection of intrusion in IDS Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.
    ids_unsw_nb_15_multiclass.csv Multi-class classification of intrusion in IDS Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.
    iot_23.csv Binary detection of IoT malware Sebastian Garcia et al. IoT-23: A labeled dataset with malicious and benign IoT network traffic, January 2020. More details here https://www.stratosphereips.org /datasets-iot23
    ton_iot_binary.csv Binary detection of IoT malware Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021
    ton_iot_multiclass.csv Multi-class classification of IoT malware Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021
    tor_binary.csv Binary detection of TOR Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017.
    tor_multiclass.csv Multi-class classification of TOR Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017.
    vpn_iscx_binary.csv Binary detection of VPN Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016.
    vpn_iscx_multiclass.csv Multi-class classification of VPN Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016.
    vpn_vnat_binary.csv Binary detection of VPN Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022
    vpn_vnat_multiclass.csvMulti-class classification of VPN Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022

  7. LAcity.org Website Traffic - Page Views

    • data.lacity.org
    • datasets.ai
    • +1more
    application/rdfxml +5
    Updated Aug 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google Analytics (2019). LAcity.org Website Traffic - Page Views [Dataset]. https://data.lacity.org/Community-Economic-Development/LAcity-org-Website-Traffic-Page-Views/ni7t-83qi
    Explore at:
    xml, tsv, csv, application/rdfxml, application/rssxml, jsonAvailable download formats
    Dataset updated
    Aug 27, 2019
    Dataset provided by
    Google Analyticshttp://analytics.google.com/
    Googlehttp://google.com/
    Authors
    Google Analytics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Los Angeles
    Description

    Top 25 Daily Page Views for the main website of Los Angeles

  8. i

    Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and...

    • ieee-dataport.org
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamad Amar Irsyad Mohd Aminuddin (2024). Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and Mobile Webpages [Dataset]. https://ieee-dataport.org/documents/website-fingerprinting-dataset-browsing-network-traffic-desktop-and-mobile-webpages
    Explore at:
    Dataset updated
    Oct 21, 2024
    Authors
    Mohamad Amar Irsyad Mohd Aminuddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.

  9. g

    A comprehensive dataset of website traffic

    • gimi9.com
    • data.europa.eu
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). A comprehensive dataset of website traffic [Dataset]. https://gimi9.com/dataset/eu_https-open-bydata-de-api-hub-repo-datasets-https-mediatum-ub-tum-de-1700647-dataset/
    Explore at:
    Dataset updated
    Jul 11, 2024
    Description

    The dataset contains traffic collected for 96 websites located in

  10. Website traffic strategies by industry and size of enterprise

    • datasets.ai
    • www150.statcan.gc.ca
    • +3more
    21, 55, 8
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada | Statistique Canada (2024). Website traffic strategies by industry and size of enterprise [Dataset]. https://datasets.ai/datasets/a7882acc-a647-4fa6-a58b-6dae889de472
    Explore at:
    8, 55, 21Available download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Authors
    Statistics Canada | Statistique Canada
    Description

    Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.

  11. d

    Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B...

    • datarade.ai
    .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2025). Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B Shopper Insights | 59 Countries, 3-Day Lag, Daily Delivery [Dataset]. https://datarade.ai/data-products/click-global-data-web-traffic-data-transaction-data-con-consumer-edge
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Consumer Edge
    Area covered
    Bermuda, Marshall Islands, Congo, Finland, South Africa, Bosnia and Herzegovina, El Salvador, Nauru, Montserrat, Sri Lanka
    Description

    Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.

    Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.

    Use Case: Analyze Year Over Year Growth Rate by Region

    Problem A public investor wants to understand how a company’s year-over-year growth differs by region.

    Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends

    Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume

    Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels

    Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.

    Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer

  12. LAcity.org Website Traffic

    • data.lacity.org
    • datadiscoverystudio.org
    • +2more
    application/rdfxml +5
    Updated Aug 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google analytics (2019). LAcity.org Website Traffic [Dataset]. https://data.lacity.org/w/822f-gjp4/locale/
    Explore at:
    application/rssxml, csv, application/rdfxml, tsv, json, xmlAvailable download formats
    Dataset updated
    Aug 27, 2019
    Dataset provided by
    Google Analyticshttp://analytics.google.com/
    Googlehttp://google.com/
    Authors
    Google analytics
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Los Angeles
    Description

    Unique visitors, total sessions, and bounce rate for lacity.org, the main website for the City of Los Angeles.

  13. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  14. Data from: Web Traffic data set

    • kaggle.com
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhinaba Saha (2020). Web Traffic data set [Dataset]. https://www.kaggle.com/datasets/sahaabhi/web-traffic-data-set
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Abhinaba Saha
    Description

    Dataset

    This dataset was created by Abhinaba Saha

    Contents

  15. Z

    Kaggle Wikipedia Web Traffic Weekly Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bergmeir, Christoph (2021). Kaggle Wikipedia Web Traffic Weekly Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3892976
    Explore at:
    Dataset updated
    Apr 2, 2021
    Dataset provided by
    Montero-Manso, Pablo
    Bergmeir, Christoph
    Godahewa, Rakshitha
    Webb, Geoff
    Hyndman, Rob
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the aggregated version of the daily dataset used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-05, after aggregating them into weekly.

    The original dataset contains missing values. They have been simply replaced by zeros before aggregation.

  16. d

    Website Analytics

    • catalog.data.gov
    • data.nola.gov
    • +4more
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nola.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.nola.gov
    Description

    This data about nola.gov provides a window into how people are interacting with the the City of New Orleans online. The data comes from a unified Google Analytics account for New Orleans. We do not track individuals and we anonymize the IP addresses of all visitors.

  17. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  18. i

    DoQ+QUIC web traffic dataset

    • ieee-dataport.org
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Levente Csikor (2024). DoQ+QUIC web traffic dataset [Dataset]. https://ieee-dataport.org/documents/doqquic-web-traffic-dataset
    Explore at:
    Dataset updated
    Dec 3, 2024
    Authors
    Levente Csikor
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Moving away from plain-text DNS communications

  19. R

    La Ldn Dataset

    • universe.roboflow.com
    zip
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LA London (2025). La Ldn Dataset [Dataset]. https://universe.roboflow.com/la-london/la-ldn/dataset/7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    LA London
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Logos Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Brand Analysis: Marketing teams can use LA-LDN to analyze the presence and visibility of specific brands in public spaces, events, or social media posts. This information can help businesses understand the success of advertising campaigns, consumer trends, and brand recognition.

    2. Counterfeit Detection: Retailers, designers, and manufacturers can use LA-LDN to detect counterfeit products by identifying inconsistencies or discrepancies in logos on clothing, accessories, and other items. Reducing counterfeits can help protect brand integrity and customer experience.

    3. Sponsorship Measurement: Companies and event organizers can use LA-LDN to measure the impact of sponsorship deals by analyzing the visibility and frequency of sponsored logos in event photos, videos, or online media coverage. This can help them evaluate the return on investment for sponsorships and make data-driven decisions for future partnerships.

    4. Customer Behavior Insights: By analyzing customer-generated content (such as social media posts), businesses can gain insights into customer behavior and preferences, such as favorite brands, brand associations, and purchase motivations. This information can guide marketing strategies and product development.

    5. Logo Redesign Evaluation: Companies planning to update or redesign their logo can use LA-LDN to compare the performance of the updated logo against the old one in terms of visibility and recognition in real-world scenarios, like in-store displays, billboards, or website traffic. This can help them determine the effectiveness of the redesign and gather feedback for further refinements.

  20. Daily website visitors (time series regression)

    • kaggle.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bob Nau (2020). Daily website visitors (time series regression) [Dataset]. https://www.kaggle.com/bobnau/daily-website-visitors/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bob Nau
    Description

    Context

    This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.

    Content

    The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.

    Inspiration

    This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic

Open Data Website Traffic

Explore at:
Dataset updated
Jun 21, 2025
Dataset provided by
data.lacity.org
Description

Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

Search
Clear search
Close search
Google apps
Main menu