78 datasets found
  1. Statistical Comparison of Two ROC Curves

    • figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaacov Petscher (2023). Statistical Comparison of Two ROC Curves [Dataset]. http://doi.org/10.6084/m9.figshare.860448.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yaacov Petscher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.

  2. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  3. N

    Age-wise distribution of Excel, AL household incomes: Comparative analysis...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Age-wise distribution of Excel, AL household incomes: Comparative analysis across 16 income brackets [Dataset]. https://www.neilsberg.com/research/datasets/85a1a42b-8dec-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel, Alabama
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Excel: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 2(1.12%) households where the householder is under 25 years old, 72(40.45%) households with a householder aged between 25 and 44 years, 38(21.35%) households with a householder aged between 45 and 64 years, and 66(37.08%) households where the householder is over 65 years old.
    • In Excel, the age group of 25 to 44 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel median household income by age. You can refer the same here

  4. f

    Chip-chip Excel template example

    • fairdomhub.org
    application/excel
    Updated Feb 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katy Wolstencroft (2020). Chip-chip Excel template example [Dataset]. https://fairdomhub.org/data_files/931
    Explore at:
    application/excel(104 KB)Available download formats
    Dataset updated
    Feb 12, 2020
    Authors
    Katy Wolstencroft
    Description

    This Excel template is an example taken from the GEO web site (http://www.ncbi.nlm.nih.gov/geo/info/spreadsheet.html#GAtemplates) which has been modified to conform to the SysMO JERM (Just Enough Results Model). Using templates helps with searching and comparing data as well as making it easier to submit data to public repositories for publications.

  5. T

    Excel files containing the data for the paper titled: "Diffuse blue vs....

    • dataverse.tdl.org
    xls, xlsx
    Updated Aug 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parrish Brady; Parrish Brady (2020). Excel files containing the data for the paper titled: "Diffuse blue vs. structural silver—comparing alternative strategies for pelagic background matching between two coral reef fishes" [Dataset]. http://doi.org/10.18738/T8/ULQZPP
    Explore at:
    xls(56832), xlsx(1534870), xls(93696), xlsx(14240), xls(53760), xls(69632), xls(80384), xls(30208)Available download formats
    Dataset updated
    Aug 5, 2020
    Dataset provided by
    Texas Data Repository
    Authors
    Parrish Brady; Parrish Brady
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Excel files containing the data for the paper titled: "Diffuse blue vs. structural silver—comparing alternative strategies for pelagic background matching between two coral reef fishes." See Data for creole wrasse vs bar jack.docx for more details

  6. NARS DATA WOOD STOCK IN NEOTROPICAL STREAMS: QUANTIFYING AND COMPARING...

    • catalog.data.gov
    Updated Sep 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2023). NARS DATA WOOD STOCK IN NEOTROPICAL STREAMS: QUANTIFYING AND COMPARING IN-STREAM WOOD AMONG BIOMES AND REGIONS [Dataset]. https://catalog.data.gov/dataset/nars-data-wood-stock-in-neotropical-streams-quantifying-and-comparing-in-stream-wood-among
    Explore at:
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    National Rivers and Streams Assessment (NRSA) physical habitat and ancillary GIS data from NRSA 2008-2009, and 2013-2014. Portions of this dataset are inaccessible because: Data is available in the attached excel file. They can be accessed through the following means: Data is available in the attached excel file. Format: Data is available in the attached excel file. This dataset is associated with the following publication: Saraiva, S.O., I. Rutherfurd, P. Kaufmann, C.G. Leal, D.R. Macedo, and P.S. Pompeu. WOOD STOCK IN NEOTROPICAL STREAMS: QUANTIFYING AND COMPARING INSTREAM WOOD AMONG BIOMES AND REGIONS. PLOS ONE. Public Library of Science, San Francisco, CA, USA, 0275464, (2022).

  7. 2019-2020 National Survey on Drug Use and Health: Comparison of Population...

    • catalog.data.gov
    • data.virginia.gov
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Substance Abuse and Mental Health Services Administration (2025). 2019-2020 National Survey on Drug Use and Health: Comparison of Population Percentages from the United States, Census Regions, States, and the District of Columbia (Documentation for CSV and Excel Files) [Dataset]. https://catalog.data.gov/dataset/2019-2020-national-survey-on-drug-use-and-health-comparison-of-population-percentages-from
    Explore at:
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    Substance Abuse and Mental Health Services Administrationhttps://www.samhsa.gov/
    Area covered
    Washington, United States
    Description

    State estimates for these years are no longer available due to methodological concerns with combining 2019 and 2020 data. We apologize for any inconvenience or confusion this may causeBecause of the COVID-19 pandemic, most respondents answered the survey via the web in Quarter 4 of 2020, even though all responses in Quarter 1 were from in-person interviews. It is known that people may respond to the survey differently while taking it online, thus introducing what is called a mode effect.When the state estimates were released, it was assumed that the mode effect was similar for different groups of people. However, later analyses have shown that this assumption should not be made. Because of these analyses, along with concerns about the rapid societal changes in 2020, it was determined that averages across the two years could be misleading.For more detail on this decision, see the 2019-2020state data page.

  8. m

    Data from: Cost comparison of a sewage treatment plant unit by conventional...

    • data.mendeley.com
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sameer Sayyad (2023). Cost comparison of a sewage treatment plant unit by conventional method and BIM approach [Dataset]. http://doi.org/10.17632/bj564xjfsc.1
    Explore at:
    Dataset updated
    Sep 15, 2023
    Authors
    Sameer Sayyad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Quantity estimate and cost analysis of a unit of Sewage treatment plant (STP) is done by manual method and with BIM automation. The components of the unit include inlet chamber, screen chamber (manual and automatic), grit chamber (manual and automatic) and distribution chamber. Construction specifications and unit rate are obtained from state schedule of rates for all the components of the STP unit. Non dimensional drawings of the STP are provided in pdf format for better visibility and excel sheets of quantity estimate is also provided.

  9. i

    Title: Comparing Transaction Logs to ILL - Raw Data Open Access Deposited

    • datacore.iu.edu
    Updated May 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cohen, Rachael; Michaels, Sherri (2018). Title: Comparing Transaction Logs to ILL - Raw Data Open Access Deposited [Dataset]. https://datacore.iu.edu/concern/data_sets/z603qx40z?locale=en
    Explore at:
    Dataset updated
    May 8, 2018
    Dataset provided by
    IU Scholarworks
    Authors
    Cohen, Rachael; Michaels, Sherri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset for "Comparing Transaction Logs to ILL requests to Determine the Persistence of Library Patrons In Obtaining Materials" article. Excel file contains all data in four worksheets Zip file contains four csv files, one for each worksheet: - Comparing Transaction Logs to ILL - 2016 ILL Raw ...Data.csv - Comparing Transaction Logs to ILL - 2015 ILL Raw Data.csv - Comparing Transaction Logs to ILL - 2016 Zero Search Raw Data.csv - Comparing Transaction Logs to ILL - 2015 Zero Search Raw Data.csv [more]

  10. Data and program: Comparison between Machine Learning Models and...

    • zenodo.org
    zip
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jinxu Li; Xiang Song; Jiangjiang Xia; Wei Shangguan; Xiaodong Zeng; Jinxu Li; Xiang Song; Jiangjiang Xia; Wei Shangguan; Xiaodong Zeng (2025). Data and program: Comparison between Machine Learning Models and Conventional Statistical Models in Predicting Global Tree Canopy Height and Crown Radius [Dataset]. http://doi.org/10.5281/zenodo.15951974
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jinxu Li; Xiang Song; Jiangjiang Xia; Wei Shangguan; Xiaodong Zeng; Jinxu Li; Xiang Song; Jiangjiang Xia; Wei Shangguan; Xiaodong Zeng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The attachment includes three folders:
    The first folder, Data classification (testing and training), consists of two folders (crown_radius and height), the first crown_radius folder It contains excel data of three plant functional types (PFTs) - temperate needleleaf trees (MN), temperate broadleaf trees (MB) and tropical broadleaf trees (TB), these three excel data all contain 19 soil factors data, 22 climate factors data and information such as crown_radius_m, mask, stem_diameter_cm, etc. The information in the second height folder is similar, and it corresponds to Table 1.Data summary and Figure 3 for each PFT in the article;

    The second folder, Feather importance, contains two excel spreadsheets (crown_radius-FI and height-FI), the first excel spreadsheet of crown_radius-FI Feather importance containing three plant functional types (PFTs) is temperate needleleaf trees (MN), temperate broadleaf trees (MB), and tropical broadleaf trees (TB); The excel table information of the second height-FI is similar, and its information corresponds to Figure 5 and Figure S3 in the article;

    The third folder "program" contains two packages (make_model1 and make_model2) and a calling program "Source program". Among them, the make_model1 package is mainly used to obtain the best parameters for selecting the model; The make_model2 package is based on the selection of the make_model1 package to further analyze the specific FI values of the factors in the best model. The Source program is used to make specific calls to the package according to the requirements.

  11. N

    Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Excel Township
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Excel township is shown in this column.
    • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

  12. H

    Comparison of R1 and R2 Online Research Data Services

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Nov 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Szkirpan (2022). Comparison of R1 and R2 Online Research Data Services [Dataset]. http://doi.org/10.7910/DVN/SHJABB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 29, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Elizabeth Szkirpan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Compiled in mid-2022, this dataset contains the raw data file, randomized ranked lists of R1 and R2 research institutions, and files created to support data visualization for Elizabeth Szkirpan's 2022 study regarding availability of data services and research data information via university libraries for online users. Files are available in Microsoft Excel formats.

  13. Store Data Analysis using MS excel

    • kaggle.com
    zip
    Updated Mar 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NisshaaChoudhary (2024). Store Data Analysis using MS excel [Dataset]. https://www.kaggle.com/datasets/nisshaachoudhary/store-data-analysis-using-ms-excel/discussion
    Explore at:
    zip(13048217 bytes)Available download formats
    Dataset updated
    Mar 10, 2024
    Authors
    NisshaaChoudhary
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?

    And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables

  14. m

    Data for: A systematic review showed no performance benefit of machine...

    • data.mendeley.com
    • search.datacite.org
    Updated Mar 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ben Van Calster (2019). Data for: A systematic review showed no performance benefit of machine learning over logistic regression for clinical prediction models [Dataset]. http://doi.org/10.17632/sypyt6c2mc.1
    Explore at:
    Dataset updated
    Mar 14, 2019
    Authors
    Ben Van Calster
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The uploaded files are:

    1) Excel file containing 6 sheets in respective Order: "Data Extraction" (summarized final data extractions from the three reviewers involved), "Comparison Data" (data related to the comparisons investigated), "Paper level data" (summaries at paper level), "Outcome Event Data" (information with respect to number of events for every outcome investigated within a paper), "Tuning Classification" (data related to the manner of hyperparameter tuning of Machine Learning Algorithms).

    2) R script used for the Analysis (In order to read the data, please: Save "Comparison Data", "Paper level data", "Outcome Event Data" Excel sheets as txt files. In the R script srpap: Refers to the "Paper level data" sheet, srevents: Refers to the "Outcome Event Data" sheet and srcompx: Refers to " Comparison data Sheet".

    3) Supplementary Material: Including Search String, Tables of data, Figures

    4) PRISMA checklist items

  15. N

    Excel, AL Population Dataset: Yearly Figures, Population Change, and Percent...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Excel, AL Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e6e433c-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel, Alabama
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Excel was 539, a 1.46% decrease year-by-year from 2021. Previously, in 2021, Excel population was 547, a decline of 1.08% compared to a population of 553 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Excel decreased by 36. In this period, the peak population was 713 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Excel is shown in this column.
    • Year on Year Change: This column displays the change in Excel population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel Population by Year. You can refer the same here

  16. GHS Safety Fingerprints

    • figshare.com
    xlsx
    Updated Oct 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Murphy (2018). GHS Safety Fingerprints [Dataset]. http://doi.org/10.6084/m9.figshare.7210019.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 25, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Brian Murphy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spreadsheets targeted at the analysis of GHS safety fingerprints.AbstractOver a 20-year period, the UN developed the Globally Harmonized System (GHS) to address international variation in chemical safety information standards. By 2014, the GHS became widely accepted internationally and has become the cornerstone of OSHA’s Hazard Communication Standard. Despite this progress, today we observe that there are inconsistent results when different sources apply the GHS to specific chemicals, in terms of the GHS pictograms, hazard statements, precautionary statements, and signal words assigned to those chemicals. In order to assess the magnitude of this problem, this research uses an extension of the “chemical fingerprints” used in 2D chemical structure similarity analysis to GHS classifications. By generating a chemical safety fingerprint, the consistency of the GHS information for specific chemicals can be assessed. The problem is the sources for GHS information can differ. For example, the SDS for sodium hydroxide pellets found on Fisher Scientific’s website displays two pictograms, while the GHS information for sodium hydroxide pellets on Sigma Aldrich’s website has only one pictogram. A chemical information tool, which identifies such discrepancies within a specific chemical inventory, can assist in maintaining the quality of the safety information needed to support safe work in the laboratory. The tools for this analysis will be scaled to the size of a moderate large research lab or small chemistry department as a whole (between 1000 and 3000 chemical entities) so that labelling expectations within these universes can be established as consistently as possible.Most chemists are familiar with programs such as excel and google sheets which are spreadsheet programs that are used by many chemists daily. Though a monadal programming approach with these tools, the analysis of GHS information can be made possible for non-programmers. This monadal approach employs single spreadsheet functions to analyze the data collected rather than long programs, which can be difficult to debug and maintain. Another advantage of this approach is that the single monadal functions can be mixed and matched to meet new goals as information needs about the chemical inventory evolve over time. These monadal functions will be used to converts GHS information into binary strings of data called “bitstrings”. This approach is also used when comparing chemical structures. The binary approach make data analysis more manageable, as GHS information comes in a variety of formats such as pictures or alphanumeric strings which are difficult to compare on their face. Bitstrings generated using the GHS information can be compared using an operator such as the tanimoto coefficent to yield values from 0 for strings that have no similarity to 1 for strings that are the same. Once a particular set of information is analyzed the hope is the same techniques could be extended to more information. For example, if GHS hazard statements are analyzed through a spreadsheet approach the same techniques with minor modifications could be used to tackle more GHS information such as pictograms.Intellectual Merit. This research indicates that the use of the cheminformatic technique of structural fingerprints can be used to create safety fingerprints. Structural fingerprints are binary bit strings that are obtained from the non-numeric entity of 2D structure. This structural fingerprint allows comparison of 2D structure through the use of the tanimoto coefficient. The use of this structural fingerprint can be extended to safety fingerprints, which can be created by converting a non-numeric entity such as GHS information into a binary bit string and comparing data through the use of the tanimoto coefficient.Broader Impact. Extension of this research can be applied to many aspects of GHS information. This research focused on comparing GHS hazard statements, but could be further applied to other bits of GHS information such as pictograms and GHS precautionary statements. Another facet of this research is allowing the chemist who uses the data to be able to compare large dataset using spreadsheet programs such as excel and not need a large programming background. Development of this technique will also benefit the Chemical Health and Safety community and Chemical Information communities by better defining the quality of GHS information available and providing a scalable and transferable tool to manipulate this information to meet a variety of other organizational needs.

  17. Data associated with comparison of recharge from drywells and infiltration...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2021). Data associated with comparison of recharge from drywells and infiltration basins: a modeling study [Dataset]. https://catalog.data.gov/dataset/data-associated-with-comparison-of-recharge-from-drywells-and-infiltration-basins-a-modeli
    Explore at:
    Dataset updated
    Jun 29, 2021
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This research effort is a modeling study using the HYDRUS (2D/3D) computer program (www.pc-progress.com) and described in the manuscript/journal article entitled “Comparison of recharge from drywells and infiltration basins: a modeling study.” All the tables and figures in the journal article will be documented within an Excel spreadsheet that will include worksheet tabs with data associated with each table and figure. The tabs, columns, and rows will be clearly labeled to identify table/figures, variables, and units. The information supporting the model runs will be supported in the example library of HYDRUS (2D/3D) maintained by PC-Progress. Non-standard HYDRUS subroutines for the drywell and for the infiltration pond simulations that were funded by this research will be added and made available for viewing and download. After the 1 year embargo period the site will include a link to the PubMed Central manuscript. For example, the HYDRUS library for the transient head drywell associated with the Sasidharan et al. (2018) paper is now active (https://www.pcprogress.com/en/Default.aspx?h3d2-lib-Drywell ). This dataset is associated with the following publication: Sasidharan, S., S. Bradford, J. Simunek, and S. Kraemer. Comparison of recharge from drywells and infiltration basins: A modeling study. JOURNAL OF HYDROLOGY. Elsevier Science Ltd, New York, NY, USA, 594: 125720, (2021).

  18. Data from: Comparing Finnish universities' publication profiles using...

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Otto Auranen; Otto Auranen; Janne Pölönen; Janne Pölönen (2023). Comparing Finnish universities' publication profiles using multidimensional field-normalized indicators - dataset [Dataset]. http://doi.org/10.5281/zenodo.7847546
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 21, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Otto Auranen; Otto Auranen; Janne Pölönen; Janne Pölönen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Finland
    Description

    This dataset from the VIRTA Publication Information Service consists of the metadata of 241,575 publications of Finnish universities (publication years 2016–2021) merged from yearly datasets downloaded from https://wiki.eduuni.fi/display/cscvirtajtp/Vuositasoiset+Excel-tiedostot.

    The dataset contains following information:

    • Organisation: name of the university
    • Publication year: the year of publication
    • Subfield: one of 66 fields of science based on Statistics Finland field of science classification (in Finnish), see the classification in English: https://www2.stat.fi/en/luokitukset/tieteenala/
    • Peer-reviewed: 1=peer-reviewed publications, 0=not peer-reviewed publications
    • Science communication: 1=publications aimed at professional and general audiences, 0=peer-reviewed and not peer-reviewed publications aimed at academic audience.
    • Bibliodiversity: 1=peer-reviewed book publications (chapters, monographs and edited volumes) and conference articles, 0=peer-reviewed journal articles.
    • Multilingualism: share of peer-reviewed publications in languages other than English (Finnish, Swedish and other languages).
    • Domestic publishing: 1=peer-reviewed publications in journals and books published in Finland, 0=peer-reviewed publications in journals and books published outside Finland.
    • Domestic collaboration: 1=peer-reviewed publications with co-authors from more than one Finnish university, 0=peer-reviewed publications without co-authors from more than one Finnish university.
    • International collaboration: 1=share of peer-reviewed publications with co-authors affiliated with foreign institutions, 0=share of peer-reviewed publications without co-authors affiliated with foreign institutions.
    • Research performance: 1=peer-reviewed outputs in JUFO levels 2 (“leading”) and 3 (“top”) publication channels, 0=peer-reviewed outputs in JUFO levels 1 (“basic”) and 0 (“other”) publication channels.
    • Open access: 1=peer-reviewed open access publications, including gold, hybrid and green OA, 0=peer-reviewed closed publications.
  19. w

    Comparison of estimates of 0-18 year olds

    • data.wu.ac.at
    • data.europa.eu
    pdf, xls
    Updated Sep 26, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    London Datastore Archive (2015). Comparison of estimates of 0-18 year olds [Dataset]. https://data.wu.ac.at/schema/datahub_io/ZWViYTYwZDMtZjgwNC00ZWFjLWI4YmQtNTNkZWMxMDAzOTk5
    Explore at:
    xls(185344.0), pdf(1872199.0)Available download formats
    Dataset updated
    Sep 26, 2015
    Dataset provided by
    London Datastore Archive
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    This report from the GLA Intelligence Unit compares 2011 census estimates of the population aged 0-18 to the following alternative data sources:

    • ONS 2010 based sub-national population projections (SNPP);

    • GLA 2011 round population projections;

    • General Practitioner registrations; and

    • Child benefit claims.

    The report is available to download here.

    An Excel file containing the data behind charts and tables in the report is available to download here

  20. r

    Swedish election corruption in a historical-comparative perspective -...

    • researchdata.se
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jan Teorell (2025). Swedish election corruption in a historical-comparative perspective - Variable data [Dataset]. http://doi.org/10.5878/002721
    Explore at:
    (8977840), (9145952), (15582284), (143182)Available download formats
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    Lund University
    Authors
    Jan Teorell
    Time period covered
    1713 - 1869
    Area covered
    Sweden
    Description

    This is a study of historical election related legal cases in Sweden. Documentation is only available in Swedish.

    Purpose:

    The aim of this research project is to describe and explain how and why corrupt electoral practices were abolished in established democracies.

    This dataset is made up of an MS-Excel file containing information regarding election related legal cases in Sweden between the years of 1713 and 1869. Currently data is only available in Swedish and only presented in this Excel-format.

    Many of the cases can be linked to one or more photographs of material from the National Archives. See the dataset Swedish election corruption in a historical-comparative perspective - Photographs (https://doi.org/10.5878/002722).

    Photo documentation and transcription of old texts.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yaacov Petscher (2023). Statistical Comparison of Two ROC Curves [Dataset]. http://doi.org/10.6084/m9.figshare.860448.v1
Organization logoOrganization logo

Statistical Comparison of Two ROC Curves

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
xlsAvailable download formats
Dataset updated
Jun 3, 2023
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Yaacov Petscher
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.

Search
Clear search
Close search
Google apps
Main menu