35 datasets found
  1. Statistical Comparison of Two ROC Curves

    • figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaacov Petscher (2023). Statistical Comparison of Two ROC Curves [Dataset]. http://doi.org/10.6084/m9.figshare.860448.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yaacov Petscher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.

  2. N

    Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel Township, Minnesota
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Excel township is shown in this column.
    • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

  3. N

    Age-wise distribution of Excel, AL household incomes: Comparative analysis...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Age-wise distribution of Excel, AL household incomes: Comparative analysis across 16 income brackets [Dataset]. https://www.neilsberg.com/research/datasets/85a1a42b-8dec-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel, Alabama
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Excel: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 2(1.12%) households where the householder is under 25 years old, 72(40.45%) households with a householder aged between 25 and 44 years, 38(21.35%) households with a householder aged between 45 and 64 years, and 66(37.08%) households where the householder is over 65 years old.
    • In Excel, the age group of 25 to 44 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel median household income by age. You can refer the same here

  4. Employee Analysis In Excel

    • kaggle.com
    zip
    Updated Mar 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Afolabi Raymond (2024). Employee Analysis In Excel [Dataset]. https://www.kaggle.com/datasets/afolabiraymond/employee-analysis-in-excel
    Explore at:
    zip(190258 bytes)Available download formats
    Dataset updated
    Mar 20, 2024
    Authors
    Afolabi Raymond
    Description

    In this project, I analysed the employees of an organization located in two distinct countries using Excel. This project covers:

    1) How to approach a data analysis project 2) How to systematically clean data 3) Doing EDA with Excel formulas & tables 4) How to use Power Query to combine two datasets 5) Statistical Analysis of data 6) Using formulas like COUNTIFS, SUMIFS, XLOOKUP 7) Making an information finder with your data 8) Male vs. Female Analysis with Pivot tables 9) Calculating Bonuses based on business rules 10) Visual analytics of data with 4 topics 11) Analysing the salary spread (Histograms & Box plots) 12) Relationship between Salary & Rating 13) Staff growth over time - trend analysis 14) Regional Scorecard to compare NZ with India

    Including various Excel features such as: 1) Using Tables 2) Working with Power Query 3) Formulas 4) Pivot Tables 5) Conditional formatting 6) Charts 7) Data Validation 8) Keyboard Shortcuts & tricks 9) Dashboard Design

  5. Age-depth models for Pb-210 datasets (NERC Grant NE/V008269/1)

    • ckan.publishing.service.gov.uk
    • metadata.bgs.ac.uk
    • +2more
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2022). Age-depth models for Pb-210 datasets (NERC Grant NE/V008269/1) [Dataset]. https://ckan.publishing.service.gov.uk/dataset/age-depth-models-for-pb-210-datasets-nerc-grant-ne-v008269-1
    Explore at:
    Dataset updated
    Sep 7, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Age-depth models for Pb-210 datasets. The St Croix Watershed Research Station, of the Science Museum of Minnesota, kindly made available 210Pb datasets that have been measured in their lab over the past decades. The datasets come mostly from North American lakes. These datasets were used to produce both chronologies using the 'classical' CRS (Constant Rate of Supply) approach and also using a recently developed Bayesian alternative called 'Plum'. Both approaches were used in order to compare the two approaches. The 210Pb data will also be deposited in the neotomadb.org database. The dataset consists of 3 files; 1. Rcode_Pb210.R R code to process the data files, produce age-depth models and compare them. 2. StCroix_agemodel_output.zip Output of age-model runs of the St Croix datasets 3. StCroix_xlxs_files.zip Excel files of the St Croix Pb-210 datasets

  6. QoL Life Data.xlsx

    • figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sunil Nayak; Vanishri Nayak (2023). QoL Life Data.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.21702023.v4
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sunil Nayak; Vanishri Nayak
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Materials and Methods The study was held in the Oral and Maxillofacial Surgery department and Kasturba Hospital, Manipal, from November 2019 to October 2021 after approval from the Institutional Ethics Committee (IEC: 924/2019). The study included patients between 18-70 years. Patients with associated diseases like cysts or tumors of the jaw bones, pregnant women, and those with underlying psychological issues were excluded from the study. The patients were assessed 8-12 weeks after surgical intervention. A data schedule was prepared to document age, sex, and fracture type. The study consisted of 182 subjects divided into two groups of 91 each (Group A: Mild to moderate facial injury and Group B: Severe facial injury) based on the severity of maxillofacial fractures and facial injury. Informed consent was obtained from each of the study participants. We followed Facial Injury Severity Scale (FISS) to determine the severity of facial fractures and injuries. The face is divided horizontally into the mandibular, mid-facial, and upper facial thirds. Fractures in these thirds are given points based on their type (Table 1). Injuries with a total score above 4.4 were considered severe facial injuries (Group A), and those with a total score below 4.4 were considered mild/ moderate facial injuries (Group B). The QOL was compared between the two groups. Meticulous management of hard and soft tissue injuries in our state-of-the-art tertiary care hospital was implemented. All elective cases were surgically treated at least 72 hours after the initial trauma. The facial fractures were adequately reduced and fixed with high–end Titanium miniplates and screws (AO Principles of Fracture Management). Soft tissue injuries were managed by wound debridement, removal of foreign bodies, and layered wound closure. Adequate pain-relieving medication was prescribed to the patients postoperatively for effective pain control. The QOL of the subjects was assessed using the 'Twenty-point Quality of life assessment in facial trauma patients in Indian population' assessment tool. This tool contains 20 questions and uses a five-point Likert response scale. The Twenty – point quality of life assessment tool included two zones: Zone 1 (Psychosocial impact) and Zone 2 (Functional and esthetic impact), with ten questions (domains) each (Table 2). The scores for each question ranged from 1- 5, the higher score denoting better Quality of life. Accordingly, the score in each zone for a patient ranged from 10 -50, and the total scores of both zones were recorded to determine the QOL. The sum of both zones determined the prognosis following surgery (Table 2). The data collected was entered into a Microsoft Excel spreadsheet and analyzed using IBM SPSS Statistics, Version 22(Armonk, NY: IBM Corp). Descriptive data were presented in the form of frequency and percentage for categorical variables and in the form of mean, median, standard deviation, and quartiles for continuous variables. Since the data were not following normal distribution, a non-parametric test was used. QOL scores were compared between the study groups using the Mann-Whitney U test. P value < 0.05 was considered statistically significant.

  7. B

    Financial Performance Indicators for Canadian Business [Excel]

    • borealisdata.ca
    • dataone.org
    Updated Sep 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Financial Performance Indicators for Canadian Business [Excel] [Dataset]. http://doi.org/10.5683/SP3/SZHJFY
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2023
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/SZHJFYhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/SZHJFY

    Time period covered
    1994 - 2011
    Area covered
    Canada
    Description

    This CD-ROM product is an authoritative reference source of 15 key financial ratios by industry groupings compiled from the North American Industry Classification System (NAICS 2007). It is based on up-to-date, reliable and comprehensive data on Canadian businesses, derived from Statistics Canada databases of financial statements for three reference years. The CD-ROM enables users to compare their enterprise's performance to that of their industry and to address issues such as profitability, efficiency and business risk. Financial Performance Indicators can also be used for inter-industry comparisons. Volume 1 covers large enterprises in both the financial and non-financial sectors, at the national level, with annual operating revenue of $25 million or more. Volume 2 covers medium-sized enterprises in the non-financial sector, at the national level, with annual operating revenue of $5 million to less than $25 million. Volume 3 covers small enterprises in the non-financial sector, at the national, provincial, territorial, Atlantic region and Prairie region levels, with annual operating revenue of $30,000 to less than $5 million. Note: FPICB has been discontinued as of 2/23/2015. Statistics Canada continues to provide information on Canadian businesses through alternative data sources. Information on specific financial ratios will continue to be available through the annual Financial and Taxation Statistics for Enterprises program: CANSIM table 180-0003 ; the Quarterly Survey of Financial Statements: CANSIM tables 187-0001 and 187-0002 ; and the Small Business Profiles, which present financial data for small businesses in Canada, available on Industry Canada's website: Financial Performance Data.

  8. Sales Dashboard in Microsoft Excel

    • kaggle.com
    zip
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavana Joshi (2023). Sales Dashboard in Microsoft Excel [Dataset]. https://www.kaggle.com/datasets/bhavanajoshij/sales-dashboard-in-microsoft-excel/discussion
    Explore at:
    zip(253363 bytes)Available download formats
    Dataset updated
    Apr 14, 2023
    Authors
    Bhavana Joshi
    Description

    This interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.

    Dashboard Overview

    1. Sales dashboard ==> basically, it is designed for the B2C type of business. like Dmart, Walmart, Amazon, Shops & supermarkets, etc.
    2. Slices ==> slices are used to drill down the data, on the basis of yearly, monthly, by sales type, and by mode of payment.
    3. Total Sales/Total Profits ==> here is, the total sales, total profit, and profit percentage these all are combined into a monthly format and we can hide or unhide it to view it as individually or comparative.
    4. Product Visual ==> the visual indicates product-wise sales for the selected period. Only 10 products are visualized at a glance, and you can scroll up & down to view other products in the list.
    5. Daily Sales ==> It shows day-wise sales. (Area Chart)
    6. Sales Type/Payment Mode ==> It shows sales percentage contribution based on the type of selling and mode of payment.
    7. Top Product & Category ==> this is for the top-selling product and product category.
    8. Category ==> the final one is the category-wise sales contribution.

    Datasheets Overview

    1. The dataset has the master data sheet or you can call it a catalog. It is added in the table form.
    2. The first column is the product ID the list of items in this column is unique.
    3. Then we have the product column instead of these two columns, we can manage with only one also but I kept it separate because sometimes product names can be the same, but some parameters will be different, like price, supplier, etc.
    4. The next column is the category column, which is the product category. like cosmetics, foods, drinks, electronics, etc.
    5. Then we have 4th column which is the unit of measure (UOM) you can update it also, based on the products you have.
    6. And the last two columns are buying price and selling price, which means unit purchasing price and unit selling price.

    Input Sheet

    The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.

    Analysis Sheet: where all backend calculations are performed.

    So, basically these are the four sheets mentioned above with different tasks.

    However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.

    A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.

    Questions & Answers

    1. What percentage of profit ratio of sales are displayed in the year 2021 and year 2022? ==> Total profit ratio of sales in the year 2021 is 19% with large sales of PRODUCT42, whereas profit ratio of sales for 2022 is 22% with large sales of PRODUCT30.
    2. Which is the top product that have large number of sales in year 2021-2022? ==> The top product in the year 2021 is PRODUCT42 with the total sales of $12,798 whereas in the year 2022 the top product is PRODUCT30 with the total sales of $13,888.
    3. In Area Chart which product is highly sold on 28th April 2022? ==> The large number of sales on 28th April 2022 is for PRODUCT14 with a 24% of profit ratio.
    4. What is the sales type and payment mode present? ==> The sale type and payment modes show the sales percentage contribution based on the type of selling and mode of payment. Here, the sale types are Direct Sales with 52%, Online Sales with 33% and Wholesaler with 15%. Also, the payment modes are Online mode and Cash equally distributed with 50%.
    5. In which month the direct sales are highest in the year 2022? ==> The highest direct sales can be easily identified which is designed by monthly format and it’s the November month where direct sales are highest with 28% as compared with other months.
    6. Which payment mode is highly received in the year 2021 and year 2022? ==> The payments received in the year 2021 are the cash payments with 52% as compared with online transactions which are 48%. Also, the cash payment highly received is in the month of March, July and October with direct sales of 42%, Online with 45% and wholesaler with 13% with large sales of PRODUCT24. ==> The payments received in the year 2022 are the Online payments with 52% as compared with cash payments which are 48%. Also, the online payment highly received is in the month of Jan, Sept and December with direct sales of 45%, Online with 37% and whole...
  9. m

    Datasets on Flow State Evaluation, USE Questionnaire, and Motion-Tracking...

    • data.mendeley.com
    • ebiltegia.mondragon.edu
    • +1more
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oscar Escallada (2025). Datasets on Flow State Evaluation, USE Questionnaire, and Motion-Tracking Glove Integration in SELFEX: An AR and Screen-Guided Training Solution [Dataset]. http://doi.org/10.17632/tvcxfhxpnz.2
    Explore at:
    Dataset updated
    Apr 2, 2025
    Authors
    Oscar Escallada
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database contains the results from questionnaires gathered during user testing of the SELFEX solution, a training system utilizing motion-tracking gloves, augmented reality (AR), and screen-based interfaces. Participants were asked to complete paper- and tablet-based questionnaires after interacting with both AR and screen-guided training environments. The data provided allows for a comparative analysis between the two training methods (AR vs. screen) and assesses the suitability of the MAGOS hand-tracking gloves for this application. Additionally, it facilitates the exploration of correlations between various user experience factors, such as ease of use, usefulness, satisfaction, and ease of learning.

    The folder is divided into two types of files:
    - PDF files: These contain the three questionnaires administered during testing.
    - "dataset.xlsx": This file includes the questionnaire results.

    Within the Excel file, the data is organized across three sheets:
    - "Results with AR glasses": Displays data from the experiment conducted using Hololens 2 AR glasses. Participants are anonymized and coded by gender (e.g., M01 for the first male participant).
    - "Results without AR glasses": Shows data from the experiment conducted with five participants using a TV screen instead of Hololens 2 to follow the assembly training instructions.
    - "Demographic data": Contains demographic information related to the participants.

    This dataset enables comprehensive evaluation and comparison of the training methods and user experiences.

  10. N

    Excel, AL Population Dataset: Yearly Figures, Population Change, and Percent...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Excel, AL Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e6e433c-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel, Alabama
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Excel was 539, a 1.46% decrease year-by-year from 2021. Previously, in 2021, Excel population was 547, a decline of 1.08% compared to a population of 553 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Excel decreased by 36. In this period, the peak population was 713 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Excel is shown in this column.
    • Year on Year Change: This column displays the change in Excel population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel Population by Year. You can refer the same here

  11. N

    Median Household Income Variation by Family Size in Excel, AL: Comparative...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in Excel, AL: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1ae5a6ac-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in Excel, AL, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, Excel did not include 2, 5, 6, or 7-person households. Across the different household sizes in Excel the mean income is $71,010, and the standard deviation is $39,365. The coefficient of variation (CV) is 55.44%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $25,559. It then further increased to $93,229 for 4-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/excel-al-median-household-income-by-household-size.jpeg" alt="Excel, AL median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel median household income. You can refer the same here

  12. Z

    Poseidon 2.0 - Decision Support Tool for Water Reuse (Microsoft Excel) and...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +1more
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oertlé, Emmanuel (2024). Poseidon 2.0 - Decision Support Tool for Water Reuse (Microsoft Excel) and Handbook [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3755379
    Explore at:
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    University of Applied Sciences Northwestern Switzerland FHNW
    Authors
    Oertlé, Emmanuel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Poseidon 2.0 is a user-oriented, simple and fast Excel-Tool which aims to compare different wastewater treatment techniques based on their pollutant removal efficiencies, their costs and additional assessment criteria. Poseidon can be applied for pre-feasibility studies in order to assess possible water reuse options and can show decision makers and other stakeholders that implementable solutions are available to comply with local requirements. This upload consists in:

    Poseidon 2.0 Excel File that can be used with Microsoft Excel - XLSM

    Handbook presenting main features of the decision support tool - PDF

    This dataset is linked to following additional open access resources:
    Oertlé E, Hugi C, Wintgens T, Karavitis C, Oertlé E, Hugi C, Wintgens T, Karavitis CA. 2019. Poseidon—Decision Support Tool for Water Reuse. Water. 11(1):153. doi:10.3390/w11010153. [accessed 2019 Jan 22]. http://www.mdpi.com/2073-4441/11/1/153 .

    Externally hosted supplementary file 1, Oertlé, Emmanuel. (2018, December 5). Poseidon - Decision Support Tool for Water Reuse (Microsoft Excel) and Handbook (Version 1.1.1). Zenodo. http://doi.org/10.5281/zenodo.3341573

    Externally hosted supplementary file 2, Oertlé, Emmanuel. (2018). Wastewater Treatment Unit Processes Datasets: Pollutant removal efficiencies, evaluation criteria and cost estimations (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1247434

    Externally hosted supplementary file 3, Oertlé, Emmanuel. (2018). Treatment Trains for Water Reclamation (Dataset) (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1972627

    Externally hosted supplementary file 4, Oertlé, Emmanuel. (2018). Water Quality Classes - Recommended Water Quality Based on Guideline and Typical Wastewater Qualities (Version 1.0.2) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3341570

  13. N

    Median Household Income Variation by Family Size in Excel Township,...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in Excel Township, Minnesota: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1ae5a8a4-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel Township, Minnesota
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in Excel Township, Minnesota, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, Excel township did not include 1, 6, or 7-person households. Across the different household sizes in Excel township the mean income is $113,608, and the standard deviation is $17,572. The coefficient of variation (CV) is 15.47%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 2-person households, with an income of $100,435. It then further increased to $139,167 for 5-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/excel-township-mn-median-household-income-by-household-size.jpeg" alt="Excel Township, Minnesota median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township median household income. You can refer the same here

  14. Dataset for numerical analysis

    • figshare.com
    • data.mendeley.com
    zip
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shi Chen; Dong Chen; Jyh-Horng Lin (2023). Dataset for numerical analysis [Dataset]. http://doi.org/10.6084/m9.figshare.24648945.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 28, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Shi Chen; Dong Chen; Jyh-Horng Lin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains one Excel sheet and five Word documents. In this dataset, Simulation.xlsx describes the parameter values used for the numerical analysis based on empirical data. In this Excel sheet, we calculated the values of each capped call-option model parameter. Computation of Table 2.docx and other documents show the results of the comparative statistics.

  15. Short-term electricity load forecasting (Panama)

    • kaggle.com
    zip
    Updated Jun 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ernesto Aguilar Madrid (2021). Short-term electricity load forecasting (Panama) [Dataset]. https://www.kaggle.com/datasets/ernestojaguilar/shortterm-electricity-load-forecasting-panama/data
    Explore at:
    zip(57551098 bytes)Available download formats
    Dataset updated
    Jun 23, 2021
    Authors
    Ernesto Aguilar Madrid
    Area covered
    Panama
    Description

    Context

    These datasets are framed on predicting the short-term electricity, this forecasting problem is known in the research field as short-term load forecasting (STLF). These datasets address the STLF problem for the Panama power system, in which the forecasting horizon is one week, with hourly steps, which is a total of 168 hours. These datasets are useful to train and test forecasting models and compare their results with the power system operator official forecast (take a look at real-time electricity load). The datasets include historical load, a vast set of weather variables, holidays, and historical load weekly forecast features. More information regarding these datasets context, a literature review of forecasting techniques suitable for this dataset, and results after testing a set of Machine Learning; are available in the article Short-Term Electricity Load Forecasting with Machine Learning. (Aguilar Madrid, E.; Antonio, N. Short-Term Electricity Load Forecasting with Machine Learning. Information 2021, 12, 50. https://doi.org/10.3390/info12020050)

    Objectives

    The main objectives around these datasets are: 1. Evaluate the power system operator official forecasts (weekly pre-dispatch forecast) against the real load, on weekly basis. 2. Develop, train and test forecasting models to improve the operator official weekly forecasts (168 hours), in different scenarios.

    Considerations to compare results

    The following considerations should be kept to compare forecasting results with the weekly pre-dispatch forecast: 1. Saturday is the first day of each weekly forecast; for instance, Friday is the last day. 2. The first full-week starting on Saturday should be considered as the first week of the year, to number the weeks. 3. A 72 hours gap of unseen records should be considered before the first day to forecast. In other words, next week forecast should be done with records until each Tuesday last hour. 4. Make sure to train and test keeping the chronological order of records.

    Data sources

    Data sources provide hourly records, from January 2015 until June 2020. The data composition is the following: 1. Historical electricity load, available on daily post-dispatch reports, from the grid operator (ETESA, CND). 2. Historical weekly forecasts available on weekly pre-dispatch reports, both from ETESA, CND. 3. Calendar information related to school periods, from Panama's Ministry of Education, published in official gazette. 4. Calendar information related to holidays, from "When on Earth?" website. 5. Weather variables, such as temperature, relative humidity, precipitation, and wind speed, for three main cities in Panama, from Earthdata.

    The original data sources provide the post-dispatch electricity load in individual Excel files on a daily basis and weekly pre-dispatch electricity load forecast data in individual Excel files on a weekly basis, both with hourly granularity. Holidays and school periods data is sparse, along with websites and PDF files. Weather data is available on daily NetCDF files.

    Datasets

    For simplicity, the published datasets are already pre-processed by merging all data sources on the date-time index: 1. A CSV file containing all records in a single continuous dataset with all variables. 2. A CSV file containing the load forecast from weekly pre-dispatch reports. 3. Two Excel files containing suggested regressors and 14 pairs of training/testing datasets as described in the PDF file.

    These 14 pairs of raining/testing datasets are selected according to these testing criteria: 1. A testing week for each month before the lockdown due to COVID-19. 2. Select testing weeks containing holidays. 3. Plus, two testing weeks during the lockdown.

    Less pre-processed data

    • Less pre-processed data regarding these datasets can be found in this data repository.
  16. Z

    Background music and cognitive task performance: systematic review dataset

    • data.niaid.nih.gov
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yiting Cheah; Hoo Keat Wong; Michael Spitzer; Eduardo Coutinho (2023). Background music and cognitive task performance: systematic review dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6301060
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    University of Nottingham, Malaysia
    University of Liverpool
    Authors
    Yiting Cheah; Hoo Keat Wong; Michael Spitzer; Eduardo Coutinho
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the raw data used for a systematic review of the impact of background music on cognitive task performance (Cheah et al., 2022). Our intention is to facilitate future updates to this work. Contents description This repository contains eight Microsoft Excel files, each containing the synthesised data pertaining to each of the six cognitive domains analysed in the review, as well as task difficulty, and population characteristics:

    raw-data-attention raw-data-inhibition raw-data-language raw-data-memory raw-data-thinking raw-data-processing-speed raw-data-task-difficulty raw-data--population Files description Tabs organisation The files pertaining to each cognitive domain include individual tabs for each cognitive task analysed (c.f. Figure 2 in the original paper for the list of cognitive tasks). The file with the population characteristics data also contains separate tabs for each characteristic (extraversion, music training, gender, and working memory capacity). Tabs contents In all files and tabs, each row corresponds to the data of a test. The same article can have more than one row if it reports multiple tests. For instance, the study by Cassidy and MacDonald (2007; cf. Memory.xlsx, tab: Memory-all) contains two experiments (immediate and delayed free recall) each with multiple test (immediate free recall: tests 25 – 32; delayed free recall: tests 58 – 61). Each test (one per row), in this experiment, pertains to comparisons between conditions where the background music has different levels of arousal, between groups of participants with different extraversion levels, between different tasks material (words or paragraphs) and different combinations of the previous (e.g., high arousing music vs silence test among extraverts whilst completing an immediate free recall task involving paragraphs; cf. test 30). The columns are organised as follows:

    "TESTS": the index of the test in a particular tab (for easy reference); "ID": abbreviation of the cognitive tasks involved in a specific experiment (see glossary for meaning); "REFERENCE": the article where the data was taken from (see main publications for list of articles); "CONDITIONS": an abbreviated description of the music condition of a given test; "MEANS (music)": the average performance across all participants in a given experiment with background music; "MEANS (silence)": the average performance across all participants in a given experiment without background music. Then, in horizontal arrangement, we also include groups of two columns that breakdown specific comparisons related to each test (i.e., all tests comparing the same two types of condition, e.g., L-BgM vs I-BgM, will appear under the same set of columns). For each one, we indicate mean difference between the respective conditions ("MD" column) and the direction of effect ("Standard Metric" column). Each file also contains a "Glossary" tab that explains all the abbreviations used in each document. Bibliography Cheah, Y., Wong, H. K., Spitzer, M., & Coutinho, E. (2022). Background music and cognitive task performance: A systematic review of task, music and population impact. Music & Science, 5(1), 1-38. https://doi.org/10.1177/20592043221134392

  17. c

    Research data supporting 'Integrative Multivariate Analysis of Mouse Liver...

    • repository.cam.ac.uk
    xls
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cornelius, Mercedes (2025). Research data supporting 'Integrative Multivariate Analysis of Mouse Liver Acini' [Dataset]. http://doi.org/10.17863/CAM.114685
    Explore at:
    xls(15199 bytes), xls(9476 bytes), xls(15153 bytes), xls(15030 bytes)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset provided by
    University of Cambridge
    Apollo
    Authors
    Cornelius, Mercedes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains p-values and statistical significance data derived from analyzing various metabolic and dietary states in mice. The data supports research investigating the effects of diet and metabolic conditions on localized variables in specific regions of mice. The files included are:

    1. PValues_and_Significance_Fasted.xlsx: P-values for variables under a fasted metabolic state.
    2. PValues_and_Significance_CTRL.xlsx: P-values for variables under a control dietary state.
    3. PValues_and_Significance_Western.xlsx: P-values for variables under a western dietary state.
    4. PValues_and_Significance_Interdietary.xlsx: P-values comparing variables between different dietary states.

    Data Collection Methods The data was collected by analyzing correlations between variables within localized regions of the mice. These variables were consistent within individuals but showed variation dependent on dietary or metabolic states. Data collection involved the following steps: 1. Selection of experimental groups based on dietary and metabolic conditions. 2. Quantitative measurement of specific variables in localized regions of mice. 3. Statistical analysis to determine the significance of correlations across the groups.

    Data Generation and Processing 1. Generation: Measurements were obtained through laboratory analysis using standardized protocols for each dietary/metabolic condition. 2. Processing: - Statistical tests were performed to identify significant correlations (e.g., t-tests, ANOVA). - P-values were computed to quantify the significance of the relationships observed. - Data was compiled into Excel sheets for organization and clarity. Technical and Non-Technical Information - Technical Details: Each file contains tabular data with headers indicating the variable pairs analyzed, their respective p-values, and the significance level (e.g., p<0.05, p<0.01).

  18. d

    GP Practice Prescribing Presentation-level Data - July 2014

    • digital.nhs.uk
    csv, zip
    Updated Oct 31, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). GP Practice Prescribing Presentation-level Data - July 2014 [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/practice-level-prescribing-data
    Explore at:
    csv(1.4 GB), zip(257.7 MB), csv(1.7 MB), csv(275.8 kB)Available download formats
    Dataset updated
    Oct 31, 2014
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jul 1, 2014 - Jul 31, 2014
    Area covered
    United Kingdom
    Description

    Warning: Large file size (over 1GB). Each monthly data set is large (over 4 million rows), but can be viewed in standard software such as Microsoft WordPad (save by right-clicking on the file name and selecting 'Save Target As', or equivalent on Mac OSX). It is then possible to select the required rows of data and copy and paste the information into another software application, such as a spreadsheet. Alternatively, add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets, can be used. The Microsoft PowerPivot add-on for Excel is available from Microsoft http://office.microsoft.com/en-gb/excel/download-power-pivot-HA101959985.aspx Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. 1. Start Excel as normal 2. Click on the PowerPivot tab 3. Click on the PowerPivot Window icon (top left) 4. In the PowerPivot Window, click on the "From Other Sources" icon 5. In the Table Import Wizard e.g. scroll to the bottom and select Text File 6. Browse to the file you want to open and choose the file extension you require e.g. CSV Once the data has been imported you can view it in a spreadsheet. What does the data cover? General practice prescribing data is a list of all medicines, dressings and appliances that are prescribed and dispensed each month. A record will only be produced when this has occurred and there is no record for a zero total. For each practice in England, the following information is presented at presentation level for each medicine, dressing and appliance, (by presentation name): - the total number of items prescribed and dispensed - the total net ingredient cost - the total actual cost - the total quantity The data covers NHS prescriptions written in England and dispensed in the community in the UK. Prescriptions written in England but dispensed outside England are included. The data includes prescriptions written by GPs and other non-medical prescribers (such as nurses and pharmacists) who are attached to GP practices. GP practices are identified only by their national code, so an additional data file - linked to the first by the practice code - provides further detail in relation to the practice. Presentations are identified only by their BNF code, so an additional data file - linked to the first by the BNF code - provides the chemical name for that presentation.

  19. IPPS DRG Provider Summary

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). IPPS DRG Provider Summary [Dataset]. https://www.kaggle.com/datasets/thedevastator/ipps-drg-provider-summary
    Explore at:
    zip(8432015 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    IPPS DRG Provider Summary

    Average Discharges, Charges, and Medicare Payments

    By Health [source]

    About this dataset

    This dataset is a valuable resource for gaining insight into Inpatient Prospective Payment System (IPPS) utilization, average charges and average Medicare payments across the top 100 Diagnosis-Related Groups (DRG). With column categories such as DRG Definition, Hospital Referral Region Description, Total Discharges, Average Covered Charges, Average Medicare Payments and Average Medicare Payments 2 this dataset enables researchers to discover and assess healthcare trends in areas such as provider payment comparsons by geographic location or compare service cost across hospital. Visualize the data using various methods to uncover unique information and drive further hospital research

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a provider level summary of Inpatient Prospective Payment System (IPPS) discharges, average charges and average Medicare payments for the Top 100 Diagnosis-Related Groups (DRG). This data can be used to analyze cost and utilization trends across hospital DRGs.

    To make the most use of this dataset, here are some steps to consider:

    • Understand what each column means in the table: Each column provides different information from the DRG Definition to Hospital Referral Region Description and Average Medicare Payments.
    • Analyze the data by looking for patterns amongst the relevant columns: Compare different aspects such as total discharges or average Medicare payments by hospital referral region or DRG Definition. This can help identify any potential trends amongst different categories within your analysis.
    • Generate visualizations: Create charts, graphs, or maps that display your data in an easy-to-understand format using tools such as Microsoft Excel or Tableau. Such visuals may reveal more insights into patterns within your data than simply reading numerical values on a spreadsheet could provide alone.

    Research Ideas

    • Identifying potential areas of cost savings by drilling down to particular DRGs and hospital regions with the highest average covered charges compared to average Medicare payments.
    • Establishing benchmarks for typical charges and payments across different DRGs and hospital regions to help providers set market-appropriate prices.
    • Analyzing trends in total discharges, charges and Medicare payments over time, allowing healthcare organizations to measure their performance against regional peers

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

    Columns

    File: 97k6-zzx3.csv | Column name | Description | |:-----------------------------------------|:------------------------------------------------------| | drg_definition | Diagnosis-Related Group (DRG) definition. (String) | | average_medicare_payments | Average Medicare payments for each DRG. (Numeric) | | hospital_referral_region_description | Description of the hospital referral region. (String) | | total_discharges | Total number of discharges for each DRG. (Numeric) | | average_covered_charges | Average covered charges for each DRG. (Numeric) | | average_medicare_payments_2 | Average Medicare payments for each DRG. (Numeric) |

    **File: Inpatient_Prospective_Payment_System_IPPS_Provider_Summary_for_the_Top_100_Diagnosis-Related_Groups_DRG...

  20. Product Sales Dataset (2023-2024)

    • kaggle.com
    zip
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yash Yennewar (2025). Product Sales Dataset (2023-2024) [Dataset]. https://www.kaggle.com/datasets/yashyennewar/product-sales-dataset-2023-2024
    Explore at:
    zip(6012656 bytes)Available download formats
    Dataset updated
    Sep 30, 2025
    Authors
    Yash Yennewar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    🛍️ Product Sales Dataset (2023–2024)

    📌 Overview

    This dataset contains 200,000 synthetic sales records simulating real-world product transactions across different U.S. regions. It is designed for data analysis, business intelligence, and machine learning projects, especially in the areas of sales forecasting, customer segmentation, profitability analysis, and regional trend evaluation.

    The dataset provides detailed transactional data including customer names, product categories, pricing, and revenue details, making it highly versatile for both beginners and advanced analysts.

    📂 Dataset Structure

    • Rows: 200,000
    • Columns: 14

    Features

    1. Order_ID – Unique identifier for each order
    2. Order_Date – Date of transaction
    3. Customer_Name – Name of the customer
    4. City – City of the customer
    5. State – State of the customer
    6. Region – Region (East, West, South, Centre)
    7. Country – Country (United States)
    8. Category – Broad product category (e.g., Accessories, Clothing & Apparel)
    9. Sub_Category – Subdivision of category (e.g., Sportswear, Bags)
    10. Product_Name – Product description
    11. Quantity – Units purchased
    12. Unit_Price – Price per unit (USD)
    13. Revenue – Total sales amount (Quantity × Unit Price)
    14. Profit – Net profit earned from the transaction

    🎯 Potential Use Cases

    • Sales Analysis: Track revenue, profit, and performance by product, category, or region.
    • Customer Analytics: Identify top customers, purchasing frequency, and loyalty patterns.
    • Profitability Insights: Compare profit margins across categories and sub-categories.
    • Time-Series Analysis: Study seasonal demand and forecast future sales.
    • Visualization Projects: Build dashboards in Power BI, Tableau, or Excel.
    • Machine Learning: Train models for demand prediction, price optimization, or segmentation.

    📊 Example Insights

    • Which region generates the highest revenue?
    • What are the top 10 most profitable products?
    • Are some product categories more popular in certain regions?
    • Which customers contribute the most to total revenue?

    🏷️ Tags

    business · sales · profitability · forecasting · customer analysis · retail

    📜 License

    This dataset is synthetic and created for educational and analytical purposes. You are free to use, modify, and share it under the CC BY 4.0 License.

    🙌 Acknowledgments

    This dataset was generated to provide a realistic foundation for learning and practicing Data Analytics, Power BI, Tableau, Python, and Excel projects.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yaacov Petscher (2023). Statistical Comparison of Two ROC Curves [Dataset]. http://doi.org/10.6084/m9.figshare.860448.v1
Organization logoOrganization logo

Statistical Comparison of Two ROC Curves

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
xlsAvailable download formats
Dataset updated
Jun 3, 2023
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Yaacov Petscher
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.

Search
Clear search
Close search
Google apps
Main menu