Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Excel: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel median household income by age. You can refer the same here
Facebook
TwitterIn this project, I analysed the employees of an organization located in two distinct countries using Excel. This project covers:
1) How to approach a data analysis project 2) How to systematically clean data 3) Doing EDA with Excel formulas & tables 4) How to use Power Query to combine two datasets 5) Statistical Analysis of data 6) Using formulas like COUNTIFS, SUMIFS, XLOOKUP 7) Making an information finder with your data 8) Male vs. Female Analysis with Pivot tables 9) Calculating Bonuses based on business rules 10) Visual analytics of data with 4 topics 11) Analysing the salary spread (Histograms & Box plots) 12) Relationship between Salary & Rating 13) Staff growth over time - trend analysis 14) Regional Scorecard to compare NZ with India
Including various Excel features such as: 1) Using Tables 2) Working with Power Query 3) Formulas 4) Pivot Tables 5) Conditional formatting 6) Charts 7) Data Validation 8) Keyboard Shortcuts & tricks 9) Dashboard Design
Facebook
TwitterAge-depth models for Pb-210 datasets. The St Croix Watershed Research Station, of the Science Museum of Minnesota, kindly made available 210Pb datasets that have been measured in their lab over the past decades. The datasets come mostly from North American lakes. These datasets were used to produce both chronologies using the 'classical' CRS (Constant Rate of Supply) approach and also using a recently developed Bayesian alternative called 'Plum'. Both approaches were used in order to compare the two approaches. The 210Pb data will also be deposited in the neotomadb.org database. The dataset consists of 3 files; 1. Rcode_Pb210.R R code to process the data files, produce age-depth models and compare them. 2. StCroix_agemodel_output.zip Output of age-model runs of the St Croix datasets 3. StCroix_xlxs_files.zip Excel files of the St Croix Pb-210 datasets
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Materials and Methods The study was held in the Oral and Maxillofacial Surgery department and Kasturba Hospital, Manipal, from November 2019 to October 2021 after approval from the Institutional Ethics Committee (IEC: 924/2019). The study included patients between 18-70 years. Patients with associated diseases like cysts or tumors of the jaw bones, pregnant women, and those with underlying psychological issues were excluded from the study. The patients were assessed 8-12 weeks after surgical intervention. A data schedule was prepared to document age, sex, and fracture type. The study consisted of 182 subjects divided into two groups of 91 each (Group A: Mild to moderate facial injury and Group B: Severe facial injury) based on the severity of maxillofacial fractures and facial injury. Informed consent was obtained from each of the study participants. We followed Facial Injury Severity Scale (FISS) to determine the severity of facial fractures and injuries. The face is divided horizontally into the mandibular, mid-facial, and upper facial thirds. Fractures in these thirds are given points based on their type (Table 1). Injuries with a total score above 4.4 were considered severe facial injuries (Group A), and those with a total score below 4.4 were considered mild/ moderate facial injuries (Group B). The QOL was compared between the two groups. Meticulous management of hard and soft tissue injuries in our state-of-the-art tertiary care hospital was implemented. All elective cases were surgically treated at least 72 hours after the initial trauma. The facial fractures were adequately reduced and fixed with high–end Titanium miniplates and screws (AO Principles of Fracture Management). Soft tissue injuries were managed by wound debridement, removal of foreign bodies, and layered wound closure. Adequate pain-relieving medication was prescribed to the patients postoperatively for effective pain control. The QOL of the subjects was assessed using the 'Twenty-point Quality of life assessment in facial trauma patients in Indian population' assessment tool. This tool contains 20 questions and uses a five-point Likert response scale. The Twenty – point quality of life assessment tool included two zones: Zone 1 (Psychosocial impact) and Zone 2 (Functional and esthetic impact), with ten questions (domains) each (Table 2). The scores for each question ranged from 1- 5, the higher score denoting better Quality of life. Accordingly, the score in each zone for a patient ranged from 10 -50, and the total scores of both zones were recorded to determine the QOL. The sum of both zones determined the prognosis following surgery (Table 2). The data collected was entered into a Microsoft Excel spreadsheet and analyzed using IBM SPSS Statistics, Version 22(Armonk, NY: IBM Corp). Descriptive data were presented in the form of frequency and percentage for categorical variables and in the form of mean, median, standard deviation, and quartiles for continuous variables. Since the data were not following normal distribution, a non-parametric test was used. QOL scores were compared between the study groups using the Mann-Whitney U test. P value < 0.05 was considered statistically significant.
Facebook
Twitterhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/SZHJFYhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/SZHJFY
This CD-ROM product is an authoritative reference source of 15 key financial ratios by industry groupings compiled from the North American Industry Classification System (NAICS 2007). It is based on up-to-date, reliable and comprehensive data on Canadian businesses, derived from Statistics Canada databases of financial statements for three reference years. The CD-ROM enables users to compare their enterprise's performance to that of their industry and to address issues such as profitability, efficiency and business risk. Financial Performance Indicators can also be used for inter-industry comparisons. Volume 1 covers large enterprises in both the financial and non-financial sectors, at the national level, with annual operating revenue of $25 million or more. Volume 2 covers medium-sized enterprises in the non-financial sector, at the national level, with annual operating revenue of $5 million to less than $25 million. Volume 3 covers small enterprises in the non-financial sector, at the national, provincial, territorial, Atlantic region and Prairie region levels, with annual operating revenue of $30,000 to less than $5 million. Note: FPICB has been discontinued as of 2/23/2015. Statistics Canada continues to provide information on Canadian businesses through alternative data sources. Information on specific financial ratios will continue to be available through the annual Financial and Taxation Statistics for Enterprises program: CANSIM table 180-0003 ; the Quarterly Survey of Financial Statements: CANSIM tables 187-0001 and 187-0002 ; and the Small Business Profiles, which present financial data for small businesses in Canada, available on Industry Canada's website: Financial Performance Data.
Facebook
TwitterThis interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.
The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.
So, basically these are the four sheets mentioned above with different tasks.
However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.
A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.
Questions & Answers
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database contains the results from questionnaires gathered during user testing of the SELFEX solution, a training system utilizing motion-tracking gloves, augmented reality (AR), and screen-based interfaces. Participants were asked to complete paper- and tablet-based questionnaires after interacting with both AR and screen-guided training environments. The data provided allows for a comparative analysis between the two training methods (AR vs. screen) and assesses the suitability of the MAGOS hand-tracking gloves for this application. Additionally, it facilitates the exploration of correlations between various user experience factors, such as ease of use, usefulness, satisfaction, and ease of learning.
The folder is divided into two types of files:
- PDF files: These contain the three questionnaires administered during testing.
- "dataset.xlsx": This file includes the questionnaire results.
Within the Excel file, the data is organized across three sheets:
- "Results with AR glasses": Displays data from the experiment conducted using Hololens 2 AR glasses. Participants are anonymized and coded by gender (e.g., M01 for the first male participant).
- "Results without AR glasses": Shows data from the experiment conducted with five participants using a TV screen instead of Hololens 2 to follow the assembly training instructions.
- "Demographic data": Contains demographic information related to the participants.
This dataset enables comprehensive evaluation and comparison of the training methods and user experiences.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Excel was 539, a 1.46% decrease year-by-year from 2021. Previously, in 2021, Excel population was 547, a decline of 1.08% compared to a population of 553 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Excel decreased by 36. In this period, the peak population was 713 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Excel, AL, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/excel-al-median-household-income-by-household-size.jpeg" alt="Excel, AL median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poseidon 2.0 is a user-oriented, simple and fast Excel-Tool which aims to compare different wastewater treatment techniques based on their pollutant removal efficiencies, their costs and additional assessment criteria. Poseidon can be applied for pre-feasibility studies in order to assess possible water reuse options and can show decision makers and other stakeholders that implementable solutions are available to comply with local requirements. This upload consists in:
Poseidon 2.0 Excel File that can be used with Microsoft Excel - XLSM
Handbook presenting main features of the decision support tool - PDF
Externally hosted supplementary file 1, Oertlé, Emmanuel. (2018, December 5). Poseidon - Decision Support Tool for Water Reuse (Microsoft Excel) and Handbook (Version 1.1.1). Zenodo. http://doi.org/10.5281/zenodo.3341573
Externally hosted supplementary file 2, Oertlé, Emmanuel. (2018). Wastewater Treatment Unit Processes Datasets: Pollutant removal efficiencies, evaluation criteria and cost estimations (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1247434
Externally hosted supplementary file 3, Oertlé, Emmanuel. (2018). Treatment Trains for Water Reclamation (Dataset) (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1972627
Externally hosted supplementary file 4, Oertlé, Emmanuel. (2018). Water Quality Classes - Recommended Water Quality Based on Guideline and Typical Wastewater Qualities (Version 1.0.2) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3341570
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Excel Township, Minnesota, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/excel-township-mn-median-household-income-by-household-size.jpeg" alt="Excel Township, Minnesota median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel township median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains one Excel sheet and five Word documents. In this dataset, Simulation.xlsx describes the parameter values used for the numerical analysis based on empirical data. In this Excel sheet, we calculated the values of each capped call-option model parameter. Computation of Table 2.docx and other documents show the results of the comparative statistics.
Facebook
TwitterThese datasets are framed on predicting the short-term electricity, this forecasting problem is known in the research field as short-term load forecasting (STLF). These datasets address the STLF problem for the Panama power system, in which the forecasting horizon is one week, with hourly steps, which is a total of 168 hours. These datasets are useful to train and test forecasting models and compare their results with the power system operator official forecast (take a look at real-time electricity load). The datasets include historical load, a vast set of weather variables, holidays, and historical load weekly forecast features. More information regarding these datasets context, a literature review of forecasting techniques suitable for this dataset, and results after testing a set of Machine Learning; are available in the article Short-Term Electricity Load Forecasting with Machine Learning. (Aguilar Madrid, E.; Antonio, N. Short-Term Electricity Load Forecasting with Machine Learning. Information 2021, 12, 50. https://doi.org/10.3390/info12020050)
The main objectives around these datasets are: 1. Evaluate the power system operator official forecasts (weekly pre-dispatch forecast) against the real load, on weekly basis. 2. Develop, train and test forecasting models to improve the operator official weekly forecasts (168 hours), in different scenarios.
The following considerations should be kept to compare forecasting results with the weekly pre-dispatch forecast: 1. Saturday is the first day of each weekly forecast; for instance, Friday is the last day. 2. The first full-week starting on Saturday should be considered as the first week of the year, to number the weeks. 3. A 72 hours gap of unseen records should be considered before the first day to forecast. In other words, next week forecast should be done with records until each Tuesday last hour. 4. Make sure to train and test keeping the chronological order of records.
Data sources provide hourly records, from January 2015 until June 2020. The data composition is the following: 1. Historical electricity load, available on daily post-dispatch reports, from the grid operator (ETESA, CND). 2. Historical weekly forecasts available on weekly pre-dispatch reports, both from ETESA, CND. 3. Calendar information related to school periods, from Panama's Ministry of Education, published in official gazette. 4. Calendar information related to holidays, from "When on Earth?" website. 5. Weather variables, such as temperature, relative humidity, precipitation, and wind speed, for three main cities in Panama, from Earthdata.
The original data sources provide the post-dispatch electricity load in individual Excel files on a daily basis and weekly pre-dispatch electricity load forecast data in individual Excel files on a weekly basis, both with hourly granularity. Holidays and school periods data is sparse, along with websites and PDF files. Weather data is available on daily NetCDF files.
For simplicity, the published datasets are already pre-processed by merging all data sources on the date-time index: 1. A CSV file containing all records in a single continuous dataset with all variables. 2. A CSV file containing the load forecast from weekly pre-dispatch reports. 3. Two Excel files containing suggested regressors and 14 pairs of training/testing datasets as described in the PDF file.
These 14 pairs of raining/testing datasets are selected according to these testing criteria: 1. A testing week for each month before the lockdown due to COVID-19. 2. Select testing weeks containing holidays. 3. Plus, two testing weeks during the lockdown.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the raw data used for a systematic review of the impact of background music on cognitive task performance (Cheah et al., 2022). Our intention is to facilitate future updates to this work. Contents description This repository contains eight Microsoft Excel files, each containing the synthesised data pertaining to each of the six cognitive domains analysed in the review, as well as task difficulty, and population characteristics:
raw-data-attention raw-data-inhibition raw-data-language raw-data-memory raw-data-thinking raw-data-processing-speed raw-data-task-difficulty raw-data--population Files description Tabs organisation The files pertaining to each cognitive domain include individual tabs for each cognitive task analysed (c.f. Figure 2 in the original paper for the list of cognitive tasks). The file with the population characteristics data also contains separate tabs for each characteristic (extraversion, music training, gender, and working memory capacity). Tabs contents In all files and tabs, each row corresponds to the data of a test. The same article can have more than one row if it reports multiple tests. For instance, the study by Cassidy and MacDonald (2007; cf. Memory.xlsx, tab: Memory-all) contains two experiments (immediate and delayed free recall) each with multiple test (immediate free recall: tests 25 – 32; delayed free recall: tests 58 – 61). Each test (one per row), in this experiment, pertains to comparisons between conditions where the background music has different levels of arousal, between groups of participants with different extraversion levels, between different tasks material (words or paragraphs) and different combinations of the previous (e.g., high arousing music vs silence test among extraverts whilst completing an immediate free recall task involving paragraphs; cf. test 30). The columns are organised as follows:
"TESTS": the index of the test in a particular tab (for easy reference); "ID": abbreviation of the cognitive tasks involved in a specific experiment (see glossary for meaning); "REFERENCE": the article where the data was taken from (see main publications for list of articles); "CONDITIONS": an abbreviated description of the music condition of a given test; "MEANS (music)": the average performance across all participants in a given experiment with background music; "MEANS (silence)": the average performance across all participants in a given experiment without background music. Then, in horizontal arrangement, we also include groups of two columns that breakdown specific comparisons related to each test (i.e., all tests comparing the same two types of condition, e.g., L-BgM vs I-BgM, will appear under the same set of columns). For each one, we indicate mean difference between the respective conditions ("MD" column) and the direction of effect ("Standard Metric" column). Each file also contains a "Glossary" tab that explains all the abbreviations used in each document. Bibliography Cheah, Y., Wong, H. K., Spitzer, M., & Coutinho, E. (2022). Background music and cognitive task performance: A systematic review of task, music and population impact. Music & Science, 5(1), 1-38. https://doi.org/10.1177/20592043221134392
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains p-values and statistical significance data derived from analyzing various metabolic and dietary states in mice. The data supports research investigating the effects of diet and metabolic conditions on localized variables in specific regions of mice. The files included are:
Data Collection Methods The data was collected by analyzing correlations between variables within localized regions of the mice. These variables were consistent within individuals but showed variation dependent on dietary or metabolic states. Data collection involved the following steps: 1. Selection of experimental groups based on dietary and metabolic conditions. 2. Quantitative measurement of specific variables in localized regions of mice. 3. Statistical analysis to determine the significance of correlations across the groups.
Data Generation and Processing 1. Generation: Measurements were obtained through laboratory analysis using standardized protocols for each dietary/metabolic condition. 2. Processing: - Statistical tests were performed to identify significant correlations (e.g., t-tests, ANOVA). - P-values were computed to quantify the significance of the relationships observed. - Data was compiled into Excel sheets for organization and clarity. Technical and Non-Technical Information - Technical Details: Each file contains tabular data with headers indicating the variable pairs analyzed, their respective p-values, and the significance level (e.g., p<0.05, p<0.01).
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Warning: Large file size (over 1GB). Each monthly data set is large (over 4 million rows), but can be viewed in standard software such as Microsoft WordPad (save by right-clicking on the file name and selecting 'Save Target As', or equivalent on Mac OSX). It is then possible to select the required rows of data and copy and paste the information into another software application, such as a spreadsheet. Alternatively, add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets, can be used. The Microsoft PowerPivot add-on for Excel is available from Microsoft http://office.microsoft.com/en-gb/excel/download-power-pivot-HA101959985.aspx Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. 1. Start Excel as normal 2. Click on the PowerPivot tab 3. Click on the PowerPivot Window icon (top left) 4. In the PowerPivot Window, click on the "From Other Sources" icon 5. In the Table Import Wizard e.g. scroll to the bottom and select Text File 6. Browse to the file you want to open and choose the file extension you require e.g. CSV Once the data has been imported you can view it in a spreadsheet. What does the data cover? General practice prescribing data is a list of all medicines, dressings and appliances that are prescribed and dispensed each month. A record will only be produced when this has occurred and there is no record for a zero total. For each practice in England, the following information is presented at presentation level for each medicine, dressing and appliance, (by presentation name): - the total number of items prescribed and dispensed - the total net ingredient cost - the total actual cost - the total quantity The data covers NHS prescriptions written in England and dispensed in the community in the UK. Prescriptions written in England but dispensed outside England are included. The data includes prescriptions written by GPs and other non-medical prescribers (such as nurses and pharmacists) who are attached to GP practices. GP practices are identified only by their national code, so an additional data file - linked to the first by the practice code - provides further detail in relation to the practice. Presentations are identified only by their BNF code, so an additional data file - linked to the first by the BNF code - provides the chemical name for that presentation.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Health [source]
This dataset is a valuable resource for gaining insight into Inpatient Prospective Payment System (IPPS) utilization, average charges and average Medicare payments across the top 100 Diagnosis-Related Groups (DRG). With column categories such as DRG Definition, Hospital Referral Region Description, Total Discharges, Average Covered Charges, Average Medicare Payments and Average Medicare Payments 2 this dataset enables researchers to discover and assess healthcare trends in areas such as provider payment comparsons by geographic location or compare service cost across hospital. Visualize the data using various methods to uncover unique information and drive further hospital research
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a provider level summary of Inpatient Prospective Payment System (IPPS) discharges, average charges and average Medicare payments for the Top 100 Diagnosis-Related Groups (DRG). This data can be used to analyze cost and utilization trends across hospital DRGs.
To make the most use of this dataset, here are some steps to consider:
- Understand what each column means in the table: Each column provides different information from the DRG Definition to Hospital Referral Region Description and Average Medicare Payments.
- Analyze the data by looking for patterns amongst the relevant columns: Compare different aspects such as total discharges or average Medicare payments by hospital referral region or DRG Definition. This can help identify any potential trends amongst different categories within your analysis.
- Generate visualizations: Create charts, graphs, or maps that display your data in an easy-to-understand format using tools such as Microsoft Excel or Tableau. Such visuals may reveal more insights into patterns within your data than simply reading numerical values on a spreadsheet could provide alone.
- Identifying potential areas of cost savings by drilling down to particular DRGs and hospital regions with the highest average covered charges compared to average Medicare payments.
- Establishing benchmarks for typical charges and payments across different DRGs and hospital regions to help providers set market-appropriate prices.
- Analyzing trends in total discharges, charges and Medicare payments over time, allowing healthcare organizations to measure their performance against regional peers
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: 97k6-zzx3.csv | Column name | Description | |:-----------------------------------------|:------------------------------------------------------| | drg_definition | Diagnosis-Related Group (DRG) definition. (String) | | average_medicare_payments | Average Medicare payments for each DRG. (Numeric) | | hospital_referral_region_description | Description of the hospital referral region. (String) | | total_discharges | Total number of discharges for each DRG. (Numeric) | | average_covered_charges | Average covered charges for each DRG. (Numeric) | | average_medicare_payments_2 | Average Medicare payments for each DRG. (Numeric) |
**File: Inpatient_Prospective_Payment_System_IPPS_Provider_Summary_for_the_Top_100_Diagnosis-Related_Groups_DRG...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 200,000 synthetic sales records simulating real-world product transactions across different U.S. regions. It is designed for data analysis, business intelligence, and machine learning projects, especially in the areas of sales forecasting, customer segmentation, profitability analysis, and regional trend evaluation.
The dataset provides detailed transactional data including customer names, product categories, pricing, and revenue details, making it highly versatile for both beginners and advanced analysts.
business · sales · profitability · forecasting · customer analysis · retail
This dataset is synthetic and created for educational and analytical purposes. You are free to use, modify, and share it under the CC BY 4.0 License.
This dataset was generated to provide a realistic foundation for learning and practicing Data Analytics, Power BI, Tableau, Python, and Excel projects.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This excel file will do a statistical tests of whether two ROC curves are different from each other based on the Area Under the Curve. You'll need the coefficient from the presented table in the following article to enter the correct AUC value for the comparison: Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839-843.