Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
Facebook
TwitterCompare state-level estimates from the 2021-2022 National Surveys on Drug Use and Health (NSDUH) using p-values. The tables accompany the2021-2022 NSDUH State Estimates of Substance Use and Mental Disorders, and can be used to determine whether the difference in estimates between two geographic areas are statistically significant. Aguide to their useis also available.The tables are available in an Excel spreadsheet or a zip file containing CSV text files. Each tab or text file contains p-values for a particular measure and a particular age group.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
his project involves the creation of an interactive Excel dashboard for SwiftAuto Traders to analyze and visualize car sales data. The dashboard includes several visualizations to provide insights into car sales, profits, and performance across different models and manufacturers. The project makes use of various charts and slicers in Excel for the analysis.
Objective: The primary goal of this project is to showcase the ability to manipulate and visualize car sales data effectively using Excel. The dashboard aims to provide:
Profit and Sales Analysis for each dealer. Sales Performance across various car models and manufacturers. Resale Value Analysis comparing prices and resale values. Insights into Retention Percentage by car models. Files in this Project: Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx: The original dataset used to create the dashboard. dashboards.xlsx: The final Excel file that contains the complete dashboard with interactive charts and slicers. Key Visualizations: Average Price and Year Resale Value: A bar chart comparing the average price and resale value of various car models. Power Performance Factor: A column chart displaying the performance across different car models. Unit Sales by Model: A donut chart showcasing unit sales by car model. Retention Percentage: A pie chart illustrating customer retention by car model. Tools Used: Microsoft Excel for creating and organizing the visualizations and dashboard. Excel Slicers for interactive filtering. Charts: Bar charts, pie charts, column charts, and sunburst charts. How to Use: Download the Dataset: You can download the Car_Sales_Kaggle_DV0130EN_Lab3_Start.xlsx file from Kaggle and follow the steps to create a similar dashboard in Excel. Open the Dashboard: The dashboards.xlsx file contains the final version of the dashboard. Simply open it in Excel and start exploring the interactive charts and slicers.
Facebook
TwitterCompare state-level estimates from the 2017-2018 National Surveys on Drug Use and Health (NSDUH) using p-values. The tables accompany the2017-2018 NSDUH State Estimates of Substance Use and Mental Disorders, and can be used to determine whether the difference in estimates between two geographic areas are statistically significant. A guide to their use is also included.The tables are available in an Excel spreadsheet or a zip file containing CSV text files. Each tab or text file contains p-values for a particular measure and a particular age group.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?
And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis Β· Data Analytics Β· ms excel Β· Pivot Tables
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository describes the dataset used for intraspecific (among individuals) and intraspecific (between species) comparisons, and data for female-entrance analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All Comparisons of Differentially Expressed Genes - excel sheet containing the annotations and fold change values of the all the differentially expressed genes between the different clone comparisonsFinal List of Common Genes - excel sheet containing the list of genes that were commonly differentially expressed between all the aphid clone comparisons. Also contains table and bar chart presenting the number of times each candidate gene selected from previous literature was found in each aphid clone comparison.Non-direct and Direct Competition - excel sheet containing number of nymphs produced by all 6 clones on the 3 host plants in the non-direct competition, and the number of nymphs produced by the two clones NS and Viola in the direct competition experiment.sterror - excel sheet containing the means and standard error values of the 6 grouped resistant and susceptible clones in the non-direct competition experiment, used to make the bar plot for the non-direct competition experiment.sterror2 - excel sheet containing the means and standard error values of the resistant clone Viola and susceptible clone NS in the direct competition experiment, used to make the bar plot for the direct competition experiment.cabbagettest - excel sheet containing the number of nymphs produce by the 6 grouped resistant and susceptible clones on the 3 host plants, used to conduct the unpaired t tests to compare the reproductive performance of resistant and susceptible clones on the 3 different host plants when in not in competitiondirectcompetition - excel sheet containing the number of nymphs produce by the resistant clone Viola and susceptible clone NS on the 3 host plants, used to conduct the unpaired t tests comparing the reproductive performance of resistant and susceptible clones on the 3 different host plants when in direct competitionAPHID HOST SHIFT DISS Rscript - R script containing all my statistical tests: unpaired t tests of resistant and susceptible clones on the 3 host plants when in direct and non direct competition, and kruskal Wallis tests and post hoc Dunns test to identify significant differences between individual and resistant and susceptible clones on the different host plants. Also contains all my code for my bar charts for the non-direct and direct competition experiments and the code for my box plots showing the significant differences between individual clones and resistant and susceptible clones on the different host plants.Up and Down-regulated Genes Graph - excel sheet containing the number of and and down regulated genes in each aphid clone comparison and the bar graph generated from this data.
Facebook
Twitterhttp://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This report from the GLA Intelligence Unit compares 2011 census estimates of the population aged 0-18 to the following alternative data sources:
β’ ONS 2010 based sub-national population projections (SNPP);
β’ GLA 2011 round population projections;
β’ General Practitioner registrations; and
β’ Child benefit claims.
The report is available to download here.
An Excel file containing the data behind charts and tables in the report is available to download here
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains video game sales data prepared for an Excel data analysis and dashboard project.
It includes detailed information on:
Game titles
Platforms
Genres
Publishers
Regional and global sales
The dataset was cleaned, structured, and analyzed in Microsoft Excel to explore patterns in the global video game market. It can be used to:
Practice data cleaning and pivot tables
Build interactive dashboards
Perform sales comparisons across regions and genres
Develop business insights from entertainment data
π§© File Information
Format: .xlsx (Excel Workbook)
Columns: Name, Platform, Year, Genre, Publisher, NA_Sales, EU_Sales, JP_Sales, Other_Sales, Global_Sales
π‘ Use Cases
Excel dashboard and chart creation
Data visualization and storytelling
Business and market analysis practice
Portfolio or learning projects
π€ Prepared by
Adewale Lateef W β for data analysis and Excel dashboard learning purposes.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
π Road Accident Data Analysis: Interactive Excel Dashboard π
Excited to share my Kaggle project focusing on road accident data analysis. Leveraging Excel's power, I've developed an interactive dashboard offering comprehensive insights for safer roads.
Key Aspects:
Data Processing & Cleaning: Ensured data reliability through meticulous processing. KPIs: Primarily focused on Total Casualties, with detailed breakdowns for Fatal, Serious, Slight, and by Car type. Visualizations: Engaging charts - Doughnuts, Line, Bar, and Pie - offering a holistic view of accident trends. Interactivity: User-friendly features include Urban/Rural and Year filters for dynamic exploration. Unique Insights:
Monthly Trends: Line chart for a nuanced comparison of current vs. previous year casualties. Road Type Breakdown: Bar chart to showcase casualties distributed across different road types. Geospatial Analysis: Doughnut charts detailing casualties by location and area. Call for Collaboration: Seeking Kaggle community input for refinement and optimization. Let's collectively contribute to making our roads safer through data-driven insights!
Looking forward to your feedback and contributions! ππ
Facebook
TwitterCompare state and regional estimates for measures of substance use and mental health using p-values. The tables are a companion to the state-level estimatetablesfrom the 2022-2023 National Surveys on Drug Use and Health (NSDUH). This resource includes both the p-value tables and a guide for their use in determining whether differences between two geographic areas are statistically significant.The tables are available in an Excel spreadsheet or a zip file containing CSV text files. Each tab or text file contains all the geographies for a particular measure and a particular age group.
Facebook
TwitterThis interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.
The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.
So, basically these are the four sheets mentioned above with different tasks.
However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.
A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.
Questions & Answers
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Microsatellites, also known as SSRs or STRs, are polymorphic DNA regions with tandem repetitions of a nucleotide motif of size 1β6 base pairs with a broad range of applications in many fields, such as comparative genomics, molecular biology, and forensics. However, the majority of researchers do not have computational training and struggle while running command-line tools or very limited web tools for their SSR research, spending a considerable amount of time learning how to execute the software and conducting the post-processing data tabulation in other tools or manuallyβtime that could be used directly in data analysis. We present EasySSR, a user-friendly web tool with command-line full functionality, designed for practical use in batch identifying and comparing SSRs in sequences, draft, or complete genomes, not requiring previous bioinformatic skills to run. EasySSR requires only a FASTA and an optional GENBANK file of one or more genomes to identify and compare STRs. The tool can automatically analyze and compare SSRs in whole genomes, convert GenBank to PTT files, identify perfect and imperfect SSRs and coding and non-coding regions, compare their frequencies, abundancy, motifs, flanking sequences, and iterations, producing many outputs ready for download such as PTT files, interactive charts, and Excel tables, giving the user the data ready for further analysis in minutes. EasySSR was implemented as a web application, which can be executed from any browser and is available for free at https://computationalbiology.ufpa.br/easyssr/. Tutorials, usage notes, and download links to the source code can be found at https://github.com/engbiopct/EasySSR.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6QWEX1https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6QWEX1
Purpose β The conversion between calibrated airspeed (CAS) and equivalent airspeed (EAS) is relatively cumbersome, because it involves the calculation of incompressible flow, for which the equations are quite long. If calculations on the computer are required, conversions with equations are necessary. In contrast, this project calculates a CAS to EAS Compressibility Correction Chart, which allows to convert CAS to EAS very quickly by reading the correction from a graph. --- Methodology β In Excel, compressibility correction is achieved through flight mechanics formulas. The correction is calculated with two distinct functions, one based on Mach Number and the other on pressure altitude. These functions are graphed individually and then integrated to produce the Compressibility Correction Chart. --- Findings β The Compressibility Correction Chart was successfully recreated as a 2-D graph. Upon comparison with other correction charts, the EAS-CAS-results demonstrate a mere 0% deviation, proving the accuracy of the findings and validating their near-perfect alignment. --- Research Limitations β Due to a limitation in Excel, which allows for 255 series for plotting, the range of input parameters had to be adjusted accordingly. The iterations of altitude span 1000 ft intervals, while those for Mach Number span 0.05 intervals. --- Practical Implications β Pilots can easily use the Compressibility Correction Chart for quick and highly accurate calculations when needed. --- Originality β CAS-EAS Compressibility Correction Charts are available in other sources. This paper represents a recreation of the 2-D Correction Chart by the combination of plots: one as function of Mach Number and the other of pressure altitude, using the Excel Software.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel spreadsheet containing, in separate sheets, the underlying raw data for graphs and figure panels. (XLSX)
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a dynamic Excel model for prioritizing projects based on Feasibility, Impact, and Size.
It visualizes project data on a Bubble Chart that updates automatically when new projects are added.
Use this tool to make data-driven prioritization decisions by identifying which projects are most feasible and high-impact.
Organizations often struggle to compare multiple initiatives objectively.
This matrix helps teams quickly determine which projects to pursue first by visualizing:
Example (partial data):
| Criteria | Project 1 | Project 2 | Project 3 | Project 4 | Project 5 | Project 6 | Project 7 | Project 8 |
|---|---|---|---|---|---|---|---|---|
| Feasibility | 7 | 9 | 5 | 2 | 7 | 2 | 6 | 8 |
| Impact | 8 | 4 | 4 | 6 | 6 | 7 | 7 | 7 |
| Size | 10 | 2 | 3 | 7 | 4 | 4 | 3 | 1 |
| Quadrant | Description | Action |
|---|---|---|
| High Feasibility / High Impact | Quick wins | Top Priority |
| High Impact / Low Feasibility | Valuable but risky | Plan carefully |
| Low Impact / High Feasibility | Easy but minor value | Optional |
| Low Impact / Low Feasibility | Low return | Defer or drop |
Project_Priority_Matrix.xlsx. You can use this for:
- Portfolio management
- Product or feature prioritization
- Strategy planning workshops
Project_Priority_Matrix.xlsxFree for personal and organizational use.
Attribution is appreciated if you share or adapt this file.
Author: [Asjad]
Contact: [m.asjad2000@gmail.com]
Compatible With: Microsoft Excel 2019+ / Office 365
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
π Bank Transaction Analytics Dashboard β SQL + Excel
πΉ Overview
This project focuses on Bank Transaction Analysis using a combination of SQL scripts and Excel dashboards. The goal is to provide insights into customer spending patterns, payment modes, suspicious transactions, and overall financial trends.
The dataset and analysis files can help learners and professionals understand how SQL and Excel can be used together for business decision-making, customer behavior tracking, and data-driven insights.
πΉ Contents
The dataset includes the following resources:
π SQL Scripts:
Create & Insert tables
15 Basic Queries
15 Advanced Queries
π CSV File:
Bank Transaction Analytics.csv (main dataset)
π Excel Charts:
Pie, Bar, Column, Line, Doughnut charts
Final Interactive Dashboard
π Screenshots:
Query outputs, Charts, and Final Dashboard visualization
π PDF Reports:
Project Report
Dashboard Report
π README.md:
Complete documentation and step-by-step explanation
πΉ Key Insights
26β35 age group spent the most across categories.
Amazon identified as the top merchant.
NetBanking showed the highest share compared to POS/UPI.
Travel & Shopping emerged as dominant categories.
πΉ Applications
Detecting suspicious transactions.
Understanding customer behavior.
Identifying top merchants and categories.
Building business intelligence dashboards.
πΉ How to Use
Download the dataset and SQL scripts.
Run Bank_Transaction_Analytics.SQL to create and insert data.
Execute the queries (Basic + Advanced) for insights.
Open Excel files to explore interactive charts and dashboards.
Refer to Project Report PDF for documentation.
πΉ Author
π©βπ» Created by: Prachi Singh
GitHub: Bank Transaction Analytics Dashboard(https://github.com/prachi-singh-ds/Bank-Transaction-Analytics-Dashboard)
β‘This project is a complete SQL + Excel integration case study and is suitable for Data Science, Business Analytics, and Data Engineering portfolios.
Facebook
TwitterThis resource, a MS Excel refresher, extends the level for this Data Nugget. Students are given an Excel workbook with the data and asked to graph and calculate diversity using Excel functions (rather than drawing graphs by hand as in the original data nugget). The data set used is the same. I use this activity in an upper division Environmental Science course for majors that focuses on Restoration Ecology. The simplicity of the data set and the comparisons of reptile diversity among urban, non-urban and urban rehabilitated lend for a great example for doing calculations in spreadsheets.
Facebook
Twitterhttps://www.cms.gov/Medicare/Health-Plans/HealthPlansGenInfo/ReportsFilesData
Trend Reports
This page was added due to popular request at the Sep 2004 Enrollment conference. It contains several useful trend and competition indicators. Certain files will be updated monthly while others will be updated quarterly. This page Contains links to the following 4 Excel files: 13 Month Trend Report
(Zipped Excel and cvs files 127K) Updated 11-02-2005
Note: The typically 1% difference among CMS reports on monthly plan enrollment is due to different run times. Despite these differences, growth indicators tend to be very stable. Therefore, the data is reliable and can be used for projections. Effective September 2005 the 13-month report will contain snapshots from two components of the CMS data system.
This file contains all Medicare Advantage Plans.
This file contains 13 Months of enrollments for each plan.
The file contains two trend indicators:
Current Month Growth and
Month Growth over year
(Eff 9-05) This file contains 13-month snapshots from two components of the CMS data system
The file also contains for each plan: Regional Office, Effective Date Organization Type, Geographic Region
Trends By State By Quarter Report
(Zipped Excel file 30K) Updated 10-17-2005
The file contains trends for all 50 states and some protectorates. For each state and each quarter the file contains:
total state eligibles
total state Medicare Advantage Enrollment
Penetration
The file contains excel bar charts showing trends in Penetration for the year. The file is organized by the 10, Center For Medicare And Medicaid Services, Regional Offices. Each Regional Office oversees several states. Competition Macro by Plan / Counties
The Competition Macro may be found in the Geographic Service Area file which is linked to the HealthPlans/ReportFilesData page. The competition macro enables one to review:
Enrollment, eligibles and penetration
for all plans
and/or for all relevant counties
In a given area of counties
By RO Type Report
(Zipped Excel and csv files 87K) Updated 11-02-2005
Note: The 1% difference among CMS reports in July 2005 total plan enrollment is due to different run times. These run time differences will be corrected in the future. The By RO Type report presents:
Both the Number and Percent of
Both Medicare Advantage Organizations and Enrollees
By Regional Office and Organization Type
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Graph Database Market Size 2025-2029
The graph database market size is valued to increase by USD 11.24 billion, at a CAGR of 29% from 2024 to 2029. Open knowledge network gaining popularity will drive the graph database market.
Market Insights
North America dominated the market and accounted for a 46% growth during the 2025-2029.
By End-user - Large enterprises segment was valued at USD 1.51 billion in 2023
By Type - RDF segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 670.01 million
Market Future Opportunities 2024: USD 11235.10 million
CAGR from 2024 to 2029 : 29%
Market Summary
The market is experiencing significant growth due to the increasing demand for low-latency query capabilities and the ability to handle complex, interconnected data. Graph databases are deployed in both on-premises data centers and cloud regions, providing flexibility for businesses with varying IT infrastructures. One real-world business scenario where graph databases excel is in supply chain optimization. In this context, graph databases can help identify the shortest path between suppliers and consumers, taking into account various factors such as inventory levels, transportation routes, and demand patterns. This can lead to increased operational efficiency and reduced costs.
However, the market faces challenges such as the lack of standardization and programming flexibility. Graph databases, while powerful, require specialized skills to implement and manage effectively. Additionally, the market is still evolving, with new players and technologies emerging regularly. Despite these challenges, the potential benefits of graph databases make them an attractive option for businesses seeking to gain a competitive edge through improved data management and analysis.
What will be the size of the Graph Database Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
The market is an evolving landscape, with businesses increasingly recognizing the value of graph technology for managing complex and interconnected data. According to recent research, the adoption of graph databases is projected to grow by over 20% annually, surpassing traditional relational databases in certain use cases. This trend is particularly significant for industries requiring advanced data analysis, such as finance, healthcare, and telecommunications. Compliance is a key decision area where graph databases offer a competitive edge. By modeling data as nodes and relationships, organizations can easily trace and analyze interconnected data, ensuring regulatory requirements are met. Moreover, graph databases enable real-time insights, which is crucial for budgeting and product strategy in today's fast-paced business environment.
Graph databases also provide superior performance compared to traditional databases, especially in handling complex queries involving relationships and connections. This translates to significant time and cost savings, making it an attractive option for businesses seeking to optimize their data management infrastructure. In conclusion, the market is experiencing robust growth, driven by its ability to handle complex data relationships and offer real-time insights. This trend is particularly relevant for industries dealing with regulatory compliance and seeking to optimize their data management infrastructure.
Unpacking the Graph Database Market Landscape
In today's data-driven business landscape, the adoption of graph databases has surged due to their unique capabilities in handling complex network data modeling. Compared to traditional relational databases, graph databases offer a significant improvement in query performance for intricate relationship queries, with some reports suggesting up to a 500% increase in query response time. Furthermore, graph databases enable efficient data lineage tracking, ensuring regulatory compliance and enhancing data version control. Graph databases, such as property graph models and RDF databases, facilitate node relationship management and real-time graph processing, making them indispensable for industries like finance, healthcare, and social media. With the rise of distributed and knowledge graph databases, organizations can achieve scalability and performance improvements, handling massive datasets with ease. Security, indexing, and deployment are essential aspects of graph databases, ensuring data integrity and availability. Query performance tuning and graph analytics libraries further enhance the value of graph databases in data integration and business intelligence applications. Ultimately, graph databases offer a powerful alternative to NoSQL databases, providing a more flexible and efficient approach to managing complex data relationships.
Key Market Drivers Fueling Growth
The growing popularity o
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.