100+ datasets found
  1. Global Data Quality Management Software Market Size By Deployment Mode, By...

    • verifiedmarketresearch.com
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Data Quality Management Software Market Size By Deployment Mode, By Organization Size, By Industry Vertical, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/data-quality-management-software-market/
    Explore at:
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2030
    Area covered
    Global
    Description

    Data Quality Management Software Market size was valued at USD 4.32 Billion in 2023 and is projected to reach USD 10.73 Billion by 2030, growing at a CAGR of 17.75% during the forecast period 2024-2030.Global Data Quality Management Software Market DriversThe growth and development of the Data Quality Management Software Market can be credited with a few key market drivers. Several of the major market drivers are listed below:Growing Data Volumes: Organizations are facing difficulties in managing and guaranteeing the quality of massive volumes of data due to the exponential growth of data generated by consumers and businesses. Organizations can identify, clean up, and preserve high-quality data from a variety of data sources and formats with the use of data quality management software.Increasing Complexity of Data Ecosystems: Organizations function within ever-more-complex data ecosystems, which are made up of a variety of systems, formats, and data sources. Software for data quality management enables the integration, standardization, and validation of data from various sources, guaranteeing accuracy and consistency throughout the data landscape.Regulatory Compliance Requirements: Organizations must maintain accurate, complete, and secure data in order to comply with regulations like the GDPR, CCPA, HIPAA, and others. Data quality management software ensures data accuracy, integrity, and privacy, which assists organizations in meeting regulatory requirements.Growing Adoption of Business Intelligence and Analytics: As BI and analytics tools are used more frequently for data-driven decision-making, there is a greater need for high-quality data. With the help of data quality management software, businesses can extract actionable insights and generate significant business value by cleaning, enriching, and preparing data for analytics.Focus on Customer Experience: Put the Customer Experience First: Businesses understand that providing excellent customer experiences requires high-quality data. By ensuring data accuracy, consistency, and completeness across customer touchpoints, data quality management software assists businesses in fostering more individualized interactions and higher customer satisfaction.Initiatives for Data Migration and Integration: Organizations must clean up, transform, and move data across heterogeneous environments as part of data migration and integration projects like cloud migration, system upgrades, and mergers and acquisitions. Software for managing data quality offers procedures and instruments to guarantee the accuracy and consistency of transferred data.Need for Data Governance and Stewardship: The implementation of efficient data governance and stewardship practises is imperative to guarantee data quality, consistency, and compliance. Data governance initiatives are supported by data quality management software, which offers features like rule-based validation, data profiling, and lineage tracking.Operational Efficiency and Cost Reduction: Inadequate data quality can lead to errors, higher operating costs, and inefficiencies for organizations. By guaranteeing high-quality data across business processes, data quality management software helps organizations increase operational efficiency, decrease errors, and minimize rework.

  2. The impact of routine data quality assessments on electronic medical record...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veronica Muthee; Aaron F. Bochner; Allison Osterman; Nzisa Liku; Willis Akhwale; James Kwach; Mehta Prachi; Joyce Wamicwe; Jacob Odhiambo; Fredrick Onyango; Nancy Puttkammer (2023). The impact of routine data quality assessments on electronic medical record data quality in Kenya [Dataset]. http://doi.org/10.1371/journal.pone.0195362
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Veronica Muthee; Aaron F. Bochner; Allison Osterman; Nzisa Liku; Willis Akhwale; James Kwach; Mehta Prachi; Joyce Wamicwe; Jacob Odhiambo; Fredrick Onyango; Nancy Puttkammer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kenya
    Description

    BackgroundRoutine Data Quality Assessments (RDQAs) were developed to measure and improve facility-level electronic medical record (EMR) data quality. We assessed if RDQAs were associated with improvements in data quality in KenyaEMR, an HIV care and treatment EMR used at 341 facilities in Kenya.MethodsRDQAs assess data quality by comparing information recorded in paper records to KenyaEMR. RDQAs are conducted during a one-day site visit, where approximately 100 records are randomly selected and 24 data elements are reviewed to assess data completeness and concordance. Results are immediately provided to facility staff and action plans are developed for data quality improvement. For facilities that had received more than one RDQA (baseline and follow-up), we used generalized estimating equation models to determine if data completeness or concordance improved from the baseline to the follow-up RDQAs.Results27 facilities received two RDQAs and were included in the analysis, with 2369 and 2355 records reviewed from baseline and follow-up RDQAs, respectively. The frequency of missing data in KenyaEMR declined from the baseline (31% missing) to the follow-up (13% missing) RDQAs. After adjusting for facility characteristics, records from follow-up RDQAs had 0.43-times the risk (95% CI: 0.32–0.58) of having at least one missing value among nine required data elements compared to records from baseline RDQAs. Using a scale with one point awarded for each of 20 data elements with concordant values in paper records and KenyaEMR, we found that data concordance improved from baseline (11.9/20) to follow-up (13.6/20) RDQAs, with the mean concordance score increasing by 1.79 (95% CI: 0.25–3.33).ConclusionsThis manuscript demonstrates that RDQAs can be implemented on a large scale and used to identify EMR data quality problems. RDQAs were associated with meaningful improvements in data quality and could be adapted for implementation in other settings.

  3. n

    Measuring quality of routine primary care data

    • data.niaid.nih.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    zip
    Updated Mar 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olga Kostopoulou; Brendan Delaney (2021). Measuring quality of routine primary care data [Dataset]. http://doi.org/10.5061/dryad.dncjsxkzh
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 12, 2021
    Dataset provided by
    Imperial College London
    Authors
    Olga Kostopoulou; Brendan Delaney
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Objective: Routine primary care data may be used for the derivation of clinical prediction rules and risk scores. We sought to measure the impact of a decision support system (DSS) on data completeness and freedom from bias.

    Materials and Methods: We used the clinical documentation of 34 UK General Practitioners who took part in a previous study evaluating the DSS. They consulted with 12 standardized patients. In addition to suggesting diagnoses, the DSS facilitates data coding. We compared the documentation from consultations with the electronic health record (EHR) (baseline consultations) vs. consultations with the EHR-integrated DSS (supported consultations). We measured the proportion of EHR data items related to the physician’s final diagnosis. We expected that in baseline consultations, physicians would document only or predominantly observations related to their diagnosis, while in supported consultations, they would also document other observations as a result of exploring more diagnoses and/or ease of coding.

    Results: Supported documentation contained significantly more codes (IRR=5.76 [4.31, 7.70] P<0.001) and less free text (IRR = 0.32 [0.27, 0.40] P<0.001) than baseline documentation. As expected, the proportion of diagnosis-related data was significantly lower (b=-0.08 [-0.11, -0.05] P<0.001) in the supported consultations, and this was the case for both codes and free text.

    Conclusions: We provide evidence that data entry in the EHR is incomplete and reflects physicians’ cognitive biases. This has serious implications for epidemiological research that uses routine data. A DSS that facilitates and motivates data entry during the consultation can improve routine documentation.

  4. DataSheet_1_Quality indicators: completeness, validity and timeliness of...

    • frontiersin.figshare.com
    pdf
    Updated Jul 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Giusti; Carmen Martos; Raquel Negrão Carvalho; Liesbet Van Eycken; Otto Visser; Manola Bettio (2023). DataSheet_1_Quality indicators: completeness, validity and timeliness of cancer registry data contributing to the European Cancer Information System.pdf [Dataset]. http://doi.org/10.3389/fonc.2023.1219128.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 28, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Francesco Giusti; Carmen Martos; Raquel Negrão Carvalho; Liesbet Van Eycken; Otto Visser; Manola Bettio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Population-based Cancer Registries (PBCRs) are tasked with collecting high-quality data, important for monitoring cancer burden and its trends, planning and evaluating cancer control activities, clinical and epidemiological research and development of health policies. The main indicators to measure data quality are validity, completeness, comparability and timeliness. The aim of this article is to evaluate the quality of PBCRs data collected in the first ENCR-JRC data call, dated 2015.MethodsAll malignant tumours, except skin non-melanoma, and in situ and uncertain behaviour of bladder were obtained from 130 European general PBCRs for patients older than 19 years. Proportion of cases with death certificate only (DCO%), proportion of cases with unknown primary site (PSU%), proportion of microscopically verified cases (MV%), mortality to incidence (M:I) ratio, proportion of cases with unspecified morphology (UM%) and the median of the difference between the registration date and the incidence date were computed by sex, age group, cancer site, period and PBCR.ResultsA total of 28,776,562 cases from 130 PBCRs, operating in 30 European countries were included in the analysis. The quality of incidence data reported by PBCRs has been improving across the study period. Data quality is worse for the oldest age groups and for cancer sites with poor survival. No differences were found between males and females. High variability in data quality was detected across European PBCRs.Conclusionthe results reported in this paper are to be interpreted as the baseline for monitoring PBCRs data quality indicators in Europe along time.

  5. G

    Map Data Quality Assurance Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Map Data Quality Assurance Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/map-data-quality-assurance-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Map Data Quality Assurance Market Outlook



    As per our latest research, the global map data quality assurance market size reached USD 1.85 billion in 2024, driven by the surging demand for high-precision geospatial information across industries. The market is experiencing robust momentum, growing at a CAGR of 10.2% during the forecast period. By 2033, the global map data quality assurance market is forecasted to attain USD 4.85 billion, fueled by the integration of advanced spatial analytics, regulatory compliance needs, and the proliferation of location-based services. The expansion is primarily underpinned by the criticality of data accuracy for navigation, urban planning, asset management, and other geospatial applications.




    One of the primary growth factors for the map data quality assurance market is the exponential rise in the adoption of location-based services and navigation solutions across various sectors. As businesses and governments increasingly rely on real-time geospatial insights for operational efficiency and strategic decision-making, the need for high-quality, reliable map data has become paramount. Furthermore, the evolution of smart cities and connected infrastructure has intensified the demand for accurate mapping data to enable seamless urban mobility, effective resource allocation, and disaster management. The proliferation of Internet of Things (IoT) devices and autonomous systems further accentuates the significance of data integrity and completeness, thereby propelling the adoption of advanced map data quality assurance solutions.




    Another significant driver contributing to the market’s expansion is the growing regulatory emphasis on geospatial data accuracy and privacy. Governments and regulatory bodies worldwide are instituting stringent standards for spatial data collection, validation, and sharing to ensure public safety, environmental conservation, and efficient governance. These regulations mandate comprehensive quality assurance protocols, fostering the integration of sophisticated software and services for data validation, error detection, and correction. Additionally, the increasing complexity of spatial datasets—spanning satellite imagery, aerial surveys, and ground-based sensors—necessitates robust quality assurance frameworks to maintain data consistency and reliability across platforms and applications.




    Technological advancements are also playing a pivotal role in shaping the trajectory of the map data quality assurance market. The advent of artificial intelligence (AI), machine learning, and cloud computing has revolutionized the way spatial data is processed, analyzed, and validated. AI-powered algorithms can now automate anomaly detection, spatial alignment, and feature extraction, significantly enhancing the speed and accuracy of quality assurance processes. Moreover, the emergence of cloud-based platforms has democratized access to advanced geospatial tools, enabling organizations of all sizes to implement scalable and cost-effective data quality solutions. These technological innovations are expected to further accelerate market growth, opening new avenues for product development and service delivery.




    From a regional perspective, North America currently dominates the map data quality assurance market, accounting for the largest revenue share in 2024. This leadership position is attributed to the region’s early adoption of advanced geospatial technologies, strong regulatory frameworks, and the presence of leading industry players. However, the Asia Pacific region is poised to witness the fastest growth over the forecast period, propelled by rapid urbanization, infrastructure development, and increased investments in smart city projects. Europe also maintains a significant market presence, driven by robust government initiatives for environmental monitoring and urban planning. Meanwhile, Latin America and the Middle East & Africa are gradually emerging as promising markets, supported by growing digitalization and expanding geospatial applications in transportation, utilities, and resource management.





    <h2 id='

  6. DataSheet1_Continuity and Completeness of Electronic Health Record Data for...

    • frontiersin.figshare.com
    docx
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chien-Ning Hsu; Kelly Huang; Fang-Ju Lin; Huang-Tz Ou; Ling-Ya Huang; Hsiao-Ching Kuo; Chi-Chuan Wang; Sengwee Toh (2023). DataSheet1_Continuity and Completeness of Electronic Health Record Data for Patients Treated With Oral Hypoglycemic Agents: Findings From Healthcare Delivery Systems in Taiwan.docx [Dataset]. http://doi.org/10.3389/fphar.2022.845949.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Chien-Ning Hsu; Kelly Huang; Fang-Ju Lin; Huang-Tz Ou; Ling-Ya Huang; Hsiao-Ching Kuo; Chi-Chuan Wang; Sengwee Toh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Objective: To evaluate the continuity and completeness of electronic health record (EHR) data, and the concordance of select clinical outcomes and baseline comorbidities between EHR and linked claims data, from three healthcare delivery systems in Taiwan.Methods: We identified oral hypoglycemic agent (OHA) users from the Integrated Medical Database of National Taiwan University Hospital (NTUH-iMD), which was linked to the National Health Insurance Research Database (NHIRD), from June 2011 to December 2016. A secondary evaluation involved two additional EHR databases. We created consecutive 90-day periods before and after the first recorded OHA prescription and defined patients as having continuous EHR data if there was at least one encounter or prescription in a 90-day interval. EHR data completeness was measured by dividing the number of encounters in the NTUH-iMD by the number of encounters in the NHIRD. We assessed the concordance between EHR and claims data on three clinical outcomes (cardiovascular events, nephropathy-related events, and heart failure admission). We used individual comorbidities that comprised the Charlson comorbidity index to examine the concordance of select baseline comorbidities between EHRs and claims.Results: We identified 39,268 OHA users in the NTUH-iMD. Thirty-one percent (n = 12,296) of these users contributed to the analysis that examined data continuity during the 6-month baseline and 24-month follow-up period; 31% (n = 3,845) of the 12,296 users had continuous data during this 30-month period and EHR data completeness was 52%. The concordance of major cardiovascular events, nephropathy-related events, and heart failure admission was moderate, with the NTU-iMD capturing 49–55% of the outcome events recorded in the NHIRD. The concordance of comorbidities was considerably different between the NTUH-iMD and NHIRD, with an absolute standardized difference >0.1 for most comorbidities examined. Across the three EHR databases studied, 29–55% of the OHA users had continuous records during the 6-month baseline and 24-month follow-up period.Conclusion: EHR data continuity and data completeness may be suboptimal. A thorough evaluation of data continuity and completeness is recommended before conducting clinical and translational research using EHR data in Taiwan.

  7. Data quality and methodology (TSM 2024)

    • gov.uk
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regulator of Social Housing (2024). Data quality and methodology (TSM 2024) [Dataset]. https://www.gov.uk/government/statistics/data-quality-and-methodology-tsm-2024
    Explore at:
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Regulator of Social Housing
    Description

    Contents

    Introduction

    This report describes the quality assurance arrangements for the registered provider (RP) Tenant Satisfaction Measures statistics, providing more detail on the regulatory and operational context for data collections which feed these statistics and the safeguards that aim to maximise data quality.

    Background

    The statistics we publish are based on data collected directly from local authority registered provider (LARPs) and from private registered providers (PRPs) through the Tenant Satisfaction Measures (TSM) return. We use the data collected through these returns extensively as a source of administrative data. The United Kingdom Statistics Authority (UKSA) encourages public bodies to use administrative data for statistical purposes and, as such, we publish these data.

    These data are first being published in 2024, following the first collection and publication of the TSM.

    Official Statistics in development status

    In February 2018, the UKSA published the Code of Practice for Statistics. This sets standards for organisations producing and publishing statistics, ensuring quality, trustworthiness and value.

    These statistics are drawn from our TSM data collection and are being published for the first time in 2024 as official statistics in development.

    Official statistics in development are official statistics that are undergoing development. Over the next year we will review these statistics and consider areas for improvement to guidance, validations, data processing and analysis. We will also seek user feedback with a view to improving these statistics to meet user needs and to explore issues of data quality and consistency.

    Change of designation name

    Until September 2023, ‘official statistics in development’ were called ‘experimental statistics’. Further information can be found on the https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment">Office for Statistics Regulation website.

    User feedback

    We are keen to increase the understanding of the data, including the accuracy and reliability, and the value to users. Please https://forms.office.com/e/cetNnYkHfL">complete the form or email feedback, including suggestions for improvements or queries as to the source data or processing to enquiries@rsh.gov.uk.

    Publication schedule

    We intend to publish these statistics in Autumn each year, with the data pre-announced in the release calendar.

    All data and additional information (including a list of individuals (if any) with 24 hour pre-release access) are published on our statistics pages.

    Quality assurance of administrative data

    The data used in the production of these statistics are classed as administrative data. In 2015 the UKSA published a regulatory standard for the quality assurance of administrative data. As part of our compliance to the Code of Practice, and in the context of other statistics published by the UK Government and its agencies, we have determined that the statistics drawn from the TSMs are likely to be categorised as low-quality risk – medium public interest (with a requirement for basic/enhanced assurance).

    The publication of these statistics can be considered as medium publi

  8. G

    AML Data Quality Solutions Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). AML Data Quality Solutions Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/aml-data-quality-solutions-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AML Data Quality Solutions Market Outlook



    According to our latest research, the global AML Data Quality Solutions market size in 2024 stands at USD 2.42 billion. The market is experiencing robust expansion, propelled by increasing regulatory demands and the proliferation of sophisticated financial crimes. The Compound Annual Growth Rate (CAGR) for the market is estimated at 16.8% from 2025 to 2033, setting the stage for the market to reach USD 7.23 billion by 2033. This growth is largely driven by heightened awareness of anti-money laundering (AML) compliance, growing digital transactions, and the urgent need for advanced data quality management in financial ecosystems.




    A primary growth factor for the AML Data Quality Solutions market is the escalating stringency of regulatory frameworks worldwide. Regulatory bodies such as the Financial Action Task Force (FATF), the European Union’s AML directives, and the U.S. Bank Secrecy Act are continuously updating compliance requirements, compelling organizations, particularly in the BFSI sector, to adopt robust AML data quality solutions. These regulations demand not only accurate and timely reporting but also comprehensive monitoring and management of customer and transactional data. As a result, organizations are investing heavily in advanced AML data quality software and services to ensure compliance, minimize risk, and avoid hefty penalties. The growing complexity of money laundering techniques further underscores the necessity for sophisticated data quality solutions capable of identifying and flagging suspicious activities in real time.




    Another significant driver is the exponential growth in digital transactions and the adoption of digital banking services. The proliferation of online and mobile banking, digital wallets, and cross-border transactions has expanded the attack surface for financial crimes. This digital transformation is creating vast volumes of structured and unstructured data, making it challenging for organizations to ensure data accuracy, completeness, and consistency. AML data quality solutions equipped with advanced analytics, artificial intelligence, and machine learning algorithms are becoming indispensable for detecting anomalies, reducing false positives, and streamlining compliance processes. The ability to integrate with existing IT infrastructure and provide real-time data validation is also a key factor accelerating market adoption across various industry verticals.




    The market’s growth is further fueled by the rising integration of AML data quality solutions across non-banking sectors such as healthcare, government, and retail. These sectors are increasingly recognizing the importance of robust data quality management to prevent fraud, ensure regulatory compliance, and maintain operational integrity. In healthcare, for instance, the adoption of AML data quality solutions is driven by the need to combat insurance fraud and money laundering through medical billing. In government, these solutions are critical for monitoring public funds and detecting illicit financial flows. The expansion of AML regulations to cover a broader range of industries is expected to sustain high demand for data quality solutions throughout the forecast period.




    From a regional perspective, North America currently dominates the AML Data Quality Solutions market, accounting for the largest share in 2024. This leadership is attributed to the presence of major financial institutions, a mature regulatory environment, and early adoption of advanced AML technologies. Europe follows closely, driven by stringent AML directives and the increasing adoption of digital banking. The Asia Pacific region is projected to witness the fastest growth during the forecast period, fueled by rapid digitalization, expanding financial services, and rising regulatory enforcement in countries like China, India, and Singapore. Latin America and the Middle East & Africa are also showing increasing adoption, although market penetration remains comparatively lower due to infrastructural and regulatory challenges.





    <h2 id=&#

  9. C

    Cloud Data Quality Monitoring and Testing Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Oct 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Cloud Data Quality Monitoring and Testing Report [Dataset]. https://www.archivemarketresearch.com/reports/cloud-data-quality-monitoring-and-testing-560914
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Oct 14, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Cloud Data Quality Monitoring and Testing market is poised for robust expansion, projected to reach an estimated market size of USD 15,000 million in 2025, with a remarkable Compound Annual Growth Rate (CAGR) of 18% expected from 2025 to 2033. This significant growth is fueled by the escalating volume of data generated by organizations and the increasing adoption of cloud-based solutions for data management. Businesses are recognizing that reliable data is paramount for informed decision-making, regulatory compliance, and driving competitive advantage. As more critical business processes migrate to the cloud, the imperative to ensure the accuracy, completeness, consistency, and validity of this data becomes a top priority. Consequently, investments in sophisticated monitoring and testing tools are surging, enabling organizations to proactively identify and rectify data quality issues before they impact operations or strategic initiatives. Key drivers propelling this market forward include the growing demand for real-time data analytics, the complexities introduced by multi-cloud and hybrid cloud environments, and the increasing stringency of data privacy regulations. Cloud Data Quality Monitoring and Testing solutions offer enterprises the agility and scalability required to manage vast datasets effectively. The market is segmented by deployment into On-Premises and Cloud-Based solutions, with a clear shift towards cloud-native approaches due to their inherent flexibility and cost-effectiveness. Furthermore, the adoption of these solutions is observed across both Large Enterprises and Small and Medium-sized Enterprises (SMEs), indicating a broad market appeal. Emerging trends such as AI-powered data quality anomaly detection and automated data profiling are further enhancing the capabilities of these platforms, promising to streamline data governance and boost overall data trustworthiness. However, challenges such as the initial cost of implementation and a potential shortage of skilled data quality professionals may temper the growth trajectory in certain segments. Here's a comprehensive report description for Cloud Data Quality Monitoring and Testing, incorporating your specified elements:

  10. D

    Data Quality As A Service Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Quality As A Service Market Research Report 2033 [Dataset]. https://dataintelo.com/report/data-quality-as-a-service-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Quality as a Service Market Outlook



    According to our latest research, the Data Quality as a Service (DQaaS) market size reached USD 2.4 billion globally in 2024. The market is experiencing robust expansion, with a recorded compound annual growth rate (CAGR) of 17.8% from 2025 to 2033. By the end of 2033, the DQaaS market is forecasted to attain a value of USD 8.2 billion. This remarkable growth trajectory is primarily driven by the escalating need for real-time data accuracy, regulatory compliance, and the proliferation of cloud-based data management solutions across industries.




    The growth of the Data Quality as a Service market is fundamentally propelled by the increasing adoption of cloud computing and digital transformation initiatives across enterprises of all sizes. Organizations are generating and consuming vast volumes of data, making it imperative to ensure data integrity, consistency, and reliability. The surge in big data analytics, artificial intelligence, and machine learning applications further amplifies the necessity for high-quality data. As businesses strive to make data-driven decisions, the demand for DQaaS solutions that can seamlessly integrate with existing IT infrastructure and provide scalable, on-demand data quality management is surging. The convenience of subscription-based models and the ability to access advanced data quality tools without significant upfront investment are also catalyzing market growth.




    Another significant driver for the DQaaS market is the stringent regulatory landscape governing data privacy and security, particularly in sectors such as banking, financial services, insurance (BFSI), healthcare, and government. Regulations like the General Data Protection Regulation (GDPR), Health Insurance Portability and Accountability Act (HIPAA), and other regional data protection laws necessitate that organizations maintain accurate and compliant data records. DQaaS providers offer specialized services that help enterprises automate compliance processes, minimize data errors, and mitigate the risks associated with poor data quality. As regulatory scrutiny intensifies globally, organizations are increasingly leveraging DQaaS to ensure continuous compliance and avoid hefty penalties.




    Technological advancements and the integration of artificial intelligence and machine learning into DQaaS platforms are revolutionizing how data quality is managed. Modern DQaaS solutions now offer sophisticated features such as real-time data profiling, automated anomaly detection, predictive data cleansing, and intelligent data matching. These innovations enable organizations to proactively monitor and enhance data quality, leading to improved operational efficiency and competitive advantage. Moreover, the rise of multi-cloud and hybrid IT environments is fostering the adoption of DQaaS, as these solutions provide unified data quality management across diverse data sources and platforms. The continuous evolution of DQaaS technologies is expected to further accelerate market growth over the forecast period.




    From a regional perspective, North America continues to dominate the Data Quality as a Service market, accounting for the largest revenue share in 2024. This leadership is attributed to the early adoption of cloud technologies, a robust digital infrastructure, and the presence of key market players in the United States and Canada. Europe follows closely, driven by stringent data protection regulations and a strong focus on data governance. The Asia Pacific region is witnessing the fastest growth, fueled by rapid digitalization, increasing cloud adoption among enterprises, and expanding e-commerce and financial sectors. As organizations across the globe recognize the strategic importance of high-quality data, the demand for DQaaS is expected to surge in both developed and emerging markets.



    Component Analysis



    The Component segment of the Data Quality as a Service market is bifurcated into software and services, each playing a pivotal role in the overall ecosystem. The software component comprises platforms and tools that offer functionalities such as data cleansing, profiling, matching, and monitoring. These solutions are designed to automate and streamline data quality processes, ensuring that data remains accurate, consistent, and reliable across the enterprise. The services component, on the other hand, includes consulting, imp

  11. G

    Utility GIS Data Quality Services Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Utility GIS Data Quality Services Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/utility-gis-data-quality-services-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Utility GIS Data Quality Services Market Outlook



    According to our latest research, the global Utility GIS Data Quality Services market size reached USD 1.29 billion in 2024, with a robust growth trajectory marked by a CAGR of 10.7% from 2025 to 2033. By the end of the forecast period, the market is projected to attain a value of USD 3.13 billion by 2033. This growth is primarily driven by the increasing need for accurate spatial data, the expansion of smart grid initiatives, and the rising complexity of utility network infrastructures worldwide.




    The primary growth factor propelling the Utility GIS Data Quality Services market is the surging adoption of Geographic Information Systems (GIS) for utility asset management and network optimization. Utilities are increasingly relying on GIS platforms to ensure seamless operations, improved decision-making, and regulatory compliance. However, the effectiveness of these platforms is directly linked to the quality and integrity of the underlying data. With the proliferation of IoT devices and the integration of real-time data sources, the risk of data inconsistencies and inaccuracies has risen, making robust data quality services indispensable. Utilities are investing heavily in data cleansing, validation, and enrichment to mitigate operational risks, reduce outages, and enhance customer satisfaction. This trend is expected to continue, as utilities recognize the strategic importance of data-driven operations in an increasingly digital landscape.




    Another significant driver is the global movement towards smart grids and digital transformation across the utility sector. As utilities modernize their infrastructure, they are deploying advanced metering infrastructure (AMI) and integrating distributed energy resources (DERs), which generate vast volumes of spatial and non-spatial data. Ensuring the accuracy, consistency, and completeness of this data is crucial for optimizing grid performance, minimizing losses, and enabling predictive maintenance. The need for real-time analytics and advanced network management further amplifies the demand for high-quality GIS data. Additionally, regulatory mandates for accurate reporting and asset traceability are compelling utilities to prioritize data quality initiatives. These factors collectively create a fertile environment for the growth of Utility GIS Data Quality Services, as utilities strive to achieve operational excellence and regulatory compliance.




    Technological advancements and the rise of cloud-based GIS solutions are also fueling market expansion. Cloud deployment offers utilities the flexibility to scale data quality services, access advanced analytics, and collaborate across geographies. This has democratized access to sophisticated GIS data quality tools, particularly for mid-sized and smaller utilities that previously faced budgetary constraints. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) in data quality solutions is enabling automated data cleansing, anomaly detection, and predictive analytics. These innovations are not only reducing manual intervention but also enhancing the accuracy and reliability of utility GIS data. As utilities continue to embrace digital transformation, the demand for cutting-edge data quality services is expected to surge, driving sustained market growth throughout the forecast period.



    Utility GIS plays a pivotal role in supporting the digital transformation of the utility sector. By leveraging Geographic Information Systems, utilities can achieve a comprehensive understanding of their network infrastructures, enabling more efficient asset management and network optimization. The integration of Utility GIS with advanced data quality services ensures that utilities can maintain high standards of data accuracy and integrity, which are essential for effective decision-making and regulatory compliance. As utilities continue to modernize their operations and embrace digital technologies, the role of Utility GIS in facilitating seamless data integration and real-time analytics becomes increasingly critical. This not only enhances operational efficiency but also supports the strategic goals of sustainability and resilience in utility management.




    Regionally, North America leads the Utility GIS Data Quality Services market, accounting for the largest share in 2024, followed closely by

  12. w

    Websites using Experian Data Quality

    • webtechsurvey.com
    csv
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey (2025). Websites using Experian Data Quality [Dataset]. https://webtechsurvey.com/technology/experian-data-quality
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the Experian Data Quality technology, compiled through global website indexing conducted by WebTechSurvey.

  13. Characteristics of the 27 facilities that participated in both baseline and...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veronica Muthee; Aaron F. Bochner; Allison Osterman; Nzisa Liku; Willis Akhwale; James Kwach; Mehta Prachi; Joyce Wamicwe; Jacob Odhiambo; Fredrick Onyango; Nancy Puttkammer (2023). Characteristics of the 27 facilities that participated in both baseline and follow-up RDQAs. [Dataset]. http://doi.org/10.1371/journal.pone.0195362.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Veronica Muthee; Aaron F. Bochner; Allison Osterman; Nzisa Liku; Willis Akhwale; James Kwach; Mehta Prachi; Joyce Wamicwe; Jacob Odhiambo; Fredrick Onyango; Nancy Puttkammer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of the 27 facilities that participated in both baseline and follow-up RDQAs.

  14. G

    Data Quality Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Quality Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-quality-tools-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Quality Tools Market Outlook



    According to our latest research, the global Data Quality Tools market size reached USD 2.65 billion in 2024, reflecting robust demand across industries for solutions that ensure data accuracy, consistency, and reliability. The market is poised to expand at a CAGR of 17.6% from 2025 to 2033, driven by increasing digital transformation initiatives, regulatory compliance requirements, and the exponential growth of enterprise data. By 2033, the Data Quality Tools market is forecasted to attain a value of USD 12.06 billion, as organizations worldwide continue to prioritize data-driven decision-making and invest in advanced data management solutions.




    A key growth factor propelling the Data Quality Tools market is the proliferation of data across diverse business ecosystems. Enterprises are increasingly leveraging big data analytics, artificial intelligence, and cloud computing, all of which demand high-quality data as a foundational element. The surge in unstructured and structured data from various sources such as customer interactions, IoT devices, and business operations has made data quality management a strategic imperative. Organizations recognize that poor data quality can lead to erroneous insights, operational inefficiencies, and compliance risks. As a result, the adoption of comprehensive Data Quality Tools for data profiling, cleansing, and enrichment is accelerating, particularly among industries with high data sensitivity like BFSI, healthcare, and retail.




    Another significant driver for the Data Quality Tools market is the intensifying regulatory landscape. Data privacy laws such as the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and other country-specific mandates require organizations to maintain high standards of data integrity and traceability. Non-compliance can result in substantial financial penalties and reputational damage. Consequently, businesses are investing in sophisticated Data Quality Tools that provide automated monitoring, data lineage, and audit trails to ensure regulatory adherence. This regulatory push is particularly prominent in sectors like finance, healthcare, and government, where the stakes for data accuracy and security are exceptionally high.




    Advancements in cloud technology and the growing trend of digital transformation across enterprises are also fueling market growth. Cloud-based Data Quality Tools offer scalability, flexibility, and cost-efficiency, enabling organizations to manage data quality processes remotely and in real-time. The shift towards Software-as-a-Service (SaaS) models has lowered the entry barrier for small and medium enterprises (SMEs), allowing them to implement enterprise-grade data quality solutions without substantial upfront investments. Furthermore, the integration of machine learning and artificial intelligence capabilities into data quality platforms is enhancing automation, reducing manual intervention, and improving the overall accuracy and efficiency of data management processes.




    From a regional perspective, North America continues to dominate the Data Quality Tools market due to its early adoption of advanced technologies, a mature IT infrastructure, and the presence of leading market players. However, the Asia Pacific region is emerging as a high-growth market, driven by rapid digitalization, increasing investments in IT, and a burgeoning SME sector. Europe maintains a strong position owing to stringent data privacy regulations and widespread enterprise adoption of data management solutions. Latin America and the Middle East & Africa, while relatively nascent, are witnessing growing awareness and adoption, particularly in the banking, government, and telecommunications sectors.





    Component Analysis



    The Component segment of the Data Quality Tools market is bifurcated into software and services. Software dominates the segment, accounting for a significant share of the global market revenue in 2024. This dominance is

  15. D

    Data Quality Management Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Sep 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Quality Management Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/data-quality-management-tool-1426872
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Sep 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Quality Management (DQM) tool market is poised for steady growth, projected to reach approximately $694.1 million by 2025, with a Compound Annual Growth Rate (CAGR) of 3.4% expected to continue through 2033. This expansion is fueled by the escalating need for reliable and accurate data across all business functions. Organizations are increasingly recognizing that poor data quality directly impacts decision-making, operational efficiency, customer satisfaction, and regulatory compliance. As businesses generate and process ever-larger volumes of data from diverse sources, the imperative to cleanse, standardize, enrich, and monitor this data becomes paramount. The market is witnessing a significant surge in demand for DQM solutions that can handle complex data integration challenges and provide robust profiling and governance capabilities. The DQM market is being shaped by several key trends and drivers. A primary driver is the growing adoption of Big Data analytics and Artificial Intelligence (AI)/Machine Learning (ML), which heavily rely on high-quality data for accurate insights and predictive modeling. Furthermore, stringent data privacy regulations such as GDPR and CCPA are compelling organizations to invest in DQM tools to ensure data accuracy and compliance. The shift towards cloud-based solutions is another significant trend, offering scalability, flexibility, and cost-effectiveness. While on-premise solutions still hold a share, cloud adoption is rapidly gaining momentum. The market is segmented by application, with both Small and Medium-sized Enterprises (SMEs) and Large Enterprises demonstrating a growing need for effective DQM. Companies are increasingly investing in DQM as a strategic imperative rather than a purely tactical solution, underscoring its importance in the digital transformation journey. This report provides an in-depth analysis of the global Data Quality Management (DQM) Tool market, a critical segment of the data management landscape. The study encompasses a comprehensive historical period from 2019 to 2024, with the base year set for 2025 and an estimated year also in 2025. The forecast period extends from 2025 to 2033, offering valuable insights into future market trajectories. The DQM tool market is projected to witness significant expansion, with the global market size estimated to reach $12,500 million by 2025 and potentially exceeding $25,000 million by 2033. This growth is fueled by the increasing recognition of data as a strategic asset and the imperative for organizations to ensure data accuracy, completeness, and consistency for informed decision-making, regulatory compliance, and enhanced customer experiences.

  16. Z

    Data quality assurance at research data repositories: Survey data

    • data.niaid.nih.gov
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kindling, Maxi; Strecker, Dorothea; Wang, Yi (2024). Data quality assurance at research data repositories: Survey data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6457848
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Berlin School of Library and Information Science, Humboldt-Universität zu Berlin
    Authors
    Kindling, Maxi; Strecker, Dorothea; Wang, Yi
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset documents findings form a survey on the status quo of data quality assurance practices at research data repositories.

    The personalized online survey was conducted among repositories indexed in re3data in 2021. It covered the scope of the repository, types of data quality assessment, quality criteria, responsibilities, details of the review process, and data quality information, and yielded 332 complete responses.

    The dataset comprises a documentation file, the data file, a codebook, and the survey instrument.

    The documentation file (documentation.pdf) outlines details of the survey design and administration, survey response, and data processing. The data file (01_survey_data.csv) contains all 332 complete responses to 19 survey questions, fully anonymized. The codebook (02_codebook.csv) describes the variables, and the survey instrument (03_survey_instrument.pdf) comprises the questionnaire that was distributed to survey participants.

  17. d

    Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis and Summary Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-vector-analysis-and-summary-stati
    Explore at:
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  18. D

    Securities Reference Data Quality Platform Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Securities Reference Data Quality Platform Market Research Report 2033 [Dataset]. https://dataintelo.com/report/securities-reference-data-quality-platform-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Securities Reference Data Quality Platform Market Outlook



    According to our latest research, the global Securities Reference Data Quality Platform market size reached USD 2.47 billion in 2024, reflecting the increasing prioritization of data integrity and compliance in the financial sector. The market is expected to grow at a robust CAGR of 11.2% during the forecast period, reaching a projected value of USD 6.41 billion by 2033. This growth trajectory is driven by the rising complexity of financial instruments, stringent regulatory mandates, and the escalating demand for automated, high-quality reference data solutions across global financial institutions.




    A primary growth factor for the Securities Reference Data Quality Platform market is the rapid evolution and diversification of financial products, particularly in the equities, fixed income, and derivatives segments. As the universe of tradable securities expands, financial institutions face mounting challenges in ensuring the accuracy, completeness, and timeliness of reference data. This complexity is compounded by the proliferation of cross-border transactions and multi-asset trading, which require platforms capable of aggregating, normalizing, and validating data from numerous sources. The need to mitigate operational risks, minimize trade failures, and streamline post-trade processes is driving substantial investments in advanced data quality platforms, positioning them as mission-critical infrastructure for banks, asset managers, and brokerage firms worldwide.




    Another significant driver is the intensifying regulatory scrutiny on data governance and transparency. Global regulatory frameworks such as MiFID II, Basel III, and the Dodd-Frank Act have imposed rigorous standards for data accuracy, lineage, and traceability. Financial institutions are compelled to adopt robust reference data management solutions to ensure compliance, avoid penalties, and maintain stakeholder trust. The integration of artificial intelligence and machine learning algorithms into these platforms enhances their ability to detect anomalies, reconcile discrepancies, and automate data quality checks, further accelerating market growth. Additionally, the shift towards real-time data processing and reporting is creating new opportunities for platform providers to deliver differentiated value through scalable and flexible solutions.




    The digital transformation of capital markets is also fueling the adoption of Securities Reference Data Quality Platforms. As trading volumes surge and market participants embrace algorithmic and high-frequency trading, the margin for error in reference data narrows considerably. Financial firms are increasingly leveraging cloud-based and API-driven platforms to achieve seamless data integration, scalability, and cost efficiency. The growing emphasis on data-driven decision-making, coupled with the rise of fintech disruptors and digital asset classes, is expected to sustain double-digit growth rates in the coming years. This dynamic landscape is encouraging both established vendors and new entrants to innovate, expand their product portfolios, and form strategic partnerships to capture a larger share of the market.




    Regionally, North America continues to dominate the Securities Reference Data Quality Platform market, accounting for over 38% of global revenue in 2024. This leadership is underpinned by the presence of major financial hubs, early regulatory adoption, and a mature ecosystem of technology providers. However, Asia Pacific is emerging as the fastest-growing region, driven by the rapid modernization of financial infrastructure, increasing cross-border investment flows, and regulatory harmonization across key markets such as China, Japan, and Singapore. Europe also maintains a significant share, propelled by ongoing regulatory reforms and the proliferation of multi-asset trading platforms. The Middle East, Africa, and Latin America are gradually catching up, supported by digitalization initiatives and growing participation in global capital markets.



    Component Analysis



    The Component segment of the Securities Reference Data Quality Platform market is bifurcated into Software and Services. Software forms the backbone of these platforms, encompassing data integration engines, validation tools, data lineage modules, and analytics dashboards. As financial institutions grapple with rising data volu

  19. HadISD: Global sub-daily, surface meteorological station data, 1931-2020,...

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jan 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre for Environmental Data Analysis (CEDA) (2021). HadISD: Global sub-daily, surface meteorological station data, 1931-2020, v3.1.1.2020f [Dataset]. https://catalogue.ceda.ac.uk/uuid/f5a674c74cdd427594b6f3793b536cd0
    Explore at:
    Dataset updated
    Jan 27, 2021
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    License

    http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/

    Time period covered
    Jan 1, 1931 - Dec 31, 2020
    Area covered
    Earth
    Variables measured
    time, altitude, latitude, longitude, wind_speed, air_temperature, wind_speed_of_gust, cloud_area_fraction, cloud_base_altitude, wind_from_direction, and 8 more
    Description

    This is version 3.1.1.2020f of Met Office Hadley Centre's Integrated Surface Database, HadISD. These data are global sub-daily surface meteorological data that extends HadISD v3.1.0.2019f to include 2020 and so spans 1931-2020.

    The quality controlled variables in this dataset are: temperature, dewpoint temperature, sea-level pressure, wind speed and direction, cloud data (total, low, mid and high level). Past significant weather and precipitation data are also included, but have not been quality controlled, so their quality and completeness cannot be guaranteed. Quality control flags and data values which have been removed during the quality control process are provided in the qc_flags and flagged_values fields, and ancillary data files show the station listing with a station listing with IDs, names and location information.

    The data are provided as one NetCDF file per station. Files in the station_data folder station data files have the format "station_code"_HadISD_HadOBS_19310101-20210101_v3-1-1-2020f.nc. The station codes can be found under the docs tab. The station codes file has five columns as follows: 1) station code, 2) station name 3) station latitude 4) station longitude 5) station height.

    To keep informed about updates, news and announcements follow the HadOBS team on twitter @metofficeHadOBS.

    For more detailed information e.g bug fixes, routine updates and other exploratory analysis, see the HadISD blog: http://hadisd.blogspot.co.uk/

    References: When using the dataset in a paper you must cite the following papers (see Docs for link to the publications) and this dataset (using the "citable as" reference) :

    Dunn, R. J. H., (2019), HadISD version 3: monthly updates, Hadley Centre Technical Note.

    Dunn, R. J. H., Willett, K. M., Parker, D. E., and Mitchell, L.: Expanding HadISD: quality-controlled, sub-daily station data from 1931, Geosci. Instrum. Method. Data Syst., 5, 473-491, doi:10.5194/gi-5-473-2016, 2016.

    Dunn, R. J. H., et al. (2012), HadISD: A Quality Controlled global synoptic report database for selected variables at long-term stations from 1973-2011, Clim. Past, 8, 1649-1679, 2012, doi:10.5194/cp-8-1649-2012

    Smith, A., N. Lott, and R. Vose, 2011: The Integrated Surface Database: Recent Developments and Partnerships. Bulletin of the American Meteorological Society, 92, 704–708, doi:10.1175/2011BAMS3015.1

    For a homogeneity assessment of HadISD please see this following reference

    Dunn, R. J. H., K. M. Willett, C. P. Morice, and D. E. Parker. "Pairwise homogeneity assessment of HadISD." Climate of the Past 10, no. 4 (2014): 1501-1522. doi:10.5194/cp-10-1501-2014, 2014.

  20. G

    Data Quality as a Service Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Quality as a Service Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-quality-as-a-service-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Quality as a Service (DQaaS) Market Outlook



    According to the latest research, the global Data Quality as a Service (DQaaS) market size reached USD 2.48 billion in 2024, reflecting a robust interest in data integrity solutions across diverse industries. The market is poised to expand at a compound annual growth rate (CAGR) of 18.7% from 2025 to 2033, with the forecasted market size anticipated to reach USD 12.19 billion by 2033. This remarkable growth is primarily driven by the increasing reliance on data-driven decision-making, regulatory compliance mandates, and the proliferation of cloud-based technologies. Organizations are recognizing the necessity of high-quality data to fuel analytics, artificial intelligence, and operational efficiency, which is accelerating the adoption of DQaaS globally.




    The exponential growth of the Data Quality as a Service market is underpinned by several key factors. Primarily, the surge in data volumes generated by digital transformation initiatives and the Internet of Things (IoT) has created an urgent need for robust data quality management platforms. Enterprises are increasingly leveraging DQaaS to ensure the accuracy, completeness, and reliability of their data assets, which are crucial for maintaining a competitive edge. Additionally, the rising adoption of cloud computing has made it more feasible for organizations of all sizes to access advanced data quality tools without the need for significant upfront investment in infrastructure. This democratization of data quality solutions is expected to further fuel market expansion in the coming years.




    Another significant driver is the growing emphasis on regulatory compliance and risk mitigation. Industries such as BFSI, healthcare, and government are subject to stringent regulations regarding data privacy, security, and reporting. DQaaS platforms offer automated data validation, cleansing, and monitoring capabilities, enabling organizations to adhere to these regulatory requirements efficiently. The increasing prevalence of data breaches and cyber threats has also highlighted the importance of maintaining high-quality data, as poor data quality can exacerbate vulnerabilities and compliance risks. As a result, organizations are investing in DQaaS not only to enhance operational efficiency but also to safeguard their reputation and avoid costly penalties.




    Furthermore, the integration of artificial intelligence (AI) and machine learning (ML) technologies into DQaaS solutions is transforming the market landscape. These advanced technologies enable real-time data profiling, anomaly detection, and predictive analytics, which significantly enhance the effectiveness of data quality management. The ability to automate complex data quality processes and derive actionable insights from vast datasets is particularly appealing to large enterprises and data-centric organizations. As AI and ML continue to evolve, their application within DQaaS platforms is expected to drive innovation and unlock new growth opportunities, further solidifying the marketÂ’s upward trajectory.



    Ensuring the reliability of data through Map Data Quality Assurance is becoming increasingly crucial as organizations expand their geographic data usage. This process involves a systematic approach to verify the accuracy and consistency of spatial data, which is essential for applications ranging from logistics to urban planning. By implementing rigorous quality assurance protocols, businesses can enhance the precision of their location-based services, leading to improved decision-making and operational efficiency. As the demand for geographic information systems (GIS) grows, the emphasis on maintaining high standards of map data quality will continue to rise, supporting the overall integrity of data-driven strategies.




    From a regional perspective, North America currently dominates the Data Quality as a Service market, accounting for the largest share in 2024. This leadership is attributed to the early adoption of cloud technologies, a mature IT infrastructure, and a strong focus on data governance among enterprises in the region. Europe follows closely, with significant growth driven by strict data protection regulations such as GDPR. Meanwhile, the Asia Pacific region is witnessing the fastest growth, propelled by rapid digitalization, increasing investments in cloud

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
VERIFIED MARKET RESEARCH (2024). Global Data Quality Management Software Market Size By Deployment Mode, By Organization Size, By Industry Vertical, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/data-quality-management-software-market/
Organization logo

Global Data Quality Management Software Market Size By Deployment Mode, By Organization Size, By Industry Vertical, By Geographic Scope And Forecast

Explore at:
Dataset updated
Feb 21, 2024
Dataset provided by
Verified Market Researchhttps://www.verifiedmarketresearch.com/
Authors
VERIFIED MARKET RESEARCH
License

https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

Time period covered
2024 - 2030
Area covered
Global
Description

Data Quality Management Software Market size was valued at USD 4.32 Billion in 2023 and is projected to reach USD 10.73 Billion by 2030, growing at a CAGR of 17.75% during the forecast period 2024-2030.Global Data Quality Management Software Market DriversThe growth and development of the Data Quality Management Software Market can be credited with a few key market drivers. Several of the major market drivers are listed below:Growing Data Volumes: Organizations are facing difficulties in managing and guaranteeing the quality of massive volumes of data due to the exponential growth of data generated by consumers and businesses. Organizations can identify, clean up, and preserve high-quality data from a variety of data sources and formats with the use of data quality management software.Increasing Complexity of Data Ecosystems: Organizations function within ever-more-complex data ecosystems, which are made up of a variety of systems, formats, and data sources. Software for data quality management enables the integration, standardization, and validation of data from various sources, guaranteeing accuracy and consistency throughout the data landscape.Regulatory Compliance Requirements: Organizations must maintain accurate, complete, and secure data in order to comply with regulations like the GDPR, CCPA, HIPAA, and others. Data quality management software ensures data accuracy, integrity, and privacy, which assists organizations in meeting regulatory requirements.Growing Adoption of Business Intelligence and Analytics: As BI and analytics tools are used more frequently for data-driven decision-making, there is a greater need for high-quality data. With the help of data quality management software, businesses can extract actionable insights and generate significant business value by cleaning, enriching, and preparing data for analytics.Focus on Customer Experience: Put the Customer Experience First: Businesses understand that providing excellent customer experiences requires high-quality data. By ensuring data accuracy, consistency, and completeness across customer touchpoints, data quality management software assists businesses in fostering more individualized interactions and higher customer satisfaction.Initiatives for Data Migration and Integration: Organizations must clean up, transform, and move data across heterogeneous environments as part of data migration and integration projects like cloud migration, system upgrades, and mergers and acquisitions. Software for managing data quality offers procedures and instruments to guarantee the accuracy and consistency of transferred data.Need for Data Governance and Stewardship: The implementation of efficient data governance and stewardship practises is imperative to guarantee data quality, consistency, and compliance. Data governance initiatives are supported by data quality management software, which offers features like rule-based validation, data profiling, and lineage tracking.Operational Efficiency and Cost Reduction: Inadequate data quality can lead to errors, higher operating costs, and inefficiencies for organizations. By guaranteeing high-quality data across business processes, data quality management software helps organizations increase operational efficiency, decrease errors, and minimize rework.

Search
Clear search
Close search
Google apps
Main menu