Facebook
TwitterThis statistic depicts the age distribution of India from 2013 to 2023. In 2023, about 25.06 percent of the Indian population fell into the 0-14 year category, 68.02 percent into the 15-64 age group and 6.92 percent were over 65 years of age. Age distribution in India India is one of the largest countries in the world and its population is constantly increasing. India’s society is categorized into a hierarchically organized caste system, encompassing certain rights and values for each caste. Indians are born into a caste, and those belonging to a lower echelon often face discrimination and hardship. The median age (which means that one half of the population is younger and the other one is older) of India’s population has been increasing constantly after a slump in the 1970s, and is expected to increase further over the next few years. However, in international comparison, it is fairly low; in other countries the average inhabitant is about 20 years older. But India seems to be on the rise, not only is it a member of the BRIC states – an association of emerging economies, the other members being Brazil, Russia and China –, life expectancy of Indians has also increased significantly over the past decade, which is an indicator of access to better health care and nutrition. Gender equality is still non-existant in India, even though most Indians believe that the quality of life is about equal for men and women in their country. India is patriarchal and women still often face forced marriages, domestic violence, dowry killings or rape. As of late, India has come to be considered one of the least safe places for women worldwide. Additionally, infanticide and selective abortion of female fetuses attribute to the inequality of women in India. It is believed that this has led to the fact that the vast majority of Indian children aged 0 to 6 years are male.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides comprehensive census data at the district level for India. It includes detailed demographic, religious, educational, and workforce-related attributes, making it a rich resource for socio-economic analysis.
District_code: A unique numeric code for each district. State_name: Name of the state to which the district belongs. District_name: Name of the district.
Population: Total population of the district. Male: Total male population in the district. Female: Total female population in the district.
Literate: Total number of literate individuals in the district.
Workers: Total number of workers in the district. Male_Workers: Total number of male workers in the district. Female_Workers: Total number of female workers in the district. Cultivator_Workers: Number of workers engaged as cultivators. Agricultural_Workers: Number of workers engaged in agricultural labor. Household_Workers: Number of workers engaged in household industries.
Hindus: Total number of Hindus in the district. Muslims: Total number of Muslims in the district. Christians: Total number of Christians in the district. Sikhs: Total number of Sikhs in the district. Buddhists: Total number of Buddhists in the district. Jains: Total number of Jains in the district.
Secondary_Education: Number of individuals with secondary education. Higher_Education: Number of individuals with higher education qualifications. Graduate_Education: Number of individuals with graduate-level education.
Age_Group_0_29: Population in the age group 0–29 years. Age_Group_30_49: Population in the age group 30–49 years. Age_Group_50: Population aged 50 years and above.
Number of Districts: 640 Number of Columns: 25 Non-null Values: All columns are complete with no missing data. Detailed breakdown of population by gender, age group, literacy levels, and workforce distribution. Religious composition and education statistics are also included for each district.
Data Analysis and Visualization:
Explore patterns in population distribution, literacy rates, workforce composition, and religious demographics. Machine Learning Applications:
Build predictive models to classify districts or forecast demographic trends. Social Research:
Investigate correlations between education levels, workforce participation, and religion. Policy Planning:
Help policymakers target specific demographics or regions for intervention. Educational Insights:
Analyze the impact of education levels on workforce participation or literacy.
Total Rows: 640 Total Columns: 25 This dataset provides a unique opportunity to understand India's socio-economic and demographic composition at a granular district level.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.
This dataset contains the population distribution by state, gender, sex & region.
The file is in .csv format thus it is accessible everywhere.
Facebook
TwitterOver 909 million people in India lived in rural areas in 2023, a decrease from 2022. Urban India, although far behind with over 508 million people, had a higher year-on-year growth rate during the measured period.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Population: Census: Age: 35 to 39 Year data was reported at 85,140.684 Person th in 03-01-2011. This records an increase from the previous number of 70,574.000 Person th for 03-01-2001. India Population: Census: Age: 35 to 39 Year data is updated decadal, averaging 70,574.000 Person th from Mar 1991 (Median) to 03-01-2011, with 3 observations. The data reached an all-time high of 85,140.684 Person th in 03-01-2011 and a record low of 52,399.000 Person th in 03-01-1991. India Population: Census: Age: 35 to 39 Year data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAD001: Census: Population: by Age Group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 670 cities in the Ohio by Indian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 21 counties in the New Jersey by Indian population, as estimated by the United States Census Bureau. It also highlights population changes in each county over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterIn 2011, the sex ratio of the general population in India was *** women to every one thousand men. On the other hand, the sex ratio of the elderly population in India stood at ***** women for every one thousand men, indicating an increase from the previous year. The sex ratio for both population types was forecasted to increase by 2031. After 2011, the sex ratio for the elderly population was estimated to be over ************, which indicates a higher number of elderly women than men.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Census: Population: by Religion: Muslim: Urban data was reported at 68,740,419.000 Person in 2011. This records an increase from the previous number of 49,393,496.000 Person for 2001. India Census: Population: by Religion: Muslim: Urban data is updated yearly, averaging 59,066,957.500 Person from Mar 2001 (Median) to 2011, with 2 observations. The data reached an all-time high of 68,740,419.000 Person in 2011 and a record low of 49,393,496.000 Person in 2001. India Census: Population: by Religion: Muslim: Urban data remains active status in CEIC and is reported by Census of India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE001: Census: Population: by Religion.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The changing population age structure has a significant influence on the economy, society, and numerous other aspects of a country. This paper has innovatively applied the method of compositional data forecasting for the prediction of population age changes of the young (aged 0–14), the middle-aged (aged 15–64), and the elderly (aged older than 65) in China, India, and Vietnam by 2030 based on data from 1960 to 2016. To select the best-suited forecasting model, an array of data transformation approaches and forecasting models have been extensively employed, and a large number of comparisons have been made between the aforementioned methods. The best-suited model for each country is identified considering the root mean squared error and mean absolute percent error values from the compositional data. As noted in this study, first and foremost, it is predicted that by the year 2030, China will witness the disappearance of population dividend and get mired in an aging problem far more severe than that of India or Vietnam. Second, Vietnam’s trend of change in population age structure resembles that of China, but the country will sustain its good health as a whole. Finally, the working population of India demonstrates a strong rising trend, indicating that the age structure of the Indian population still remains relatively “young”. Meanwhile, the continuous rise in the proportion of elderly population and the gradual leveling off growth of the young population have nevertheless become serious problems in the world. The present paper attempts to offer crucial insights into the Asian population size, labor market and urbanization, and, moreover, provides suggestions for a sustainable global demographic development.
Facebook
TwitterIn 1800, the population of the region of present-day India was approximately 169 million. The population would grow gradually throughout the 19th century, rising to over 240 million by 1900. Population growth would begin to increase in the 1920s, as a result of falling mortality rates, due to improvements in health, sanitation and infrastructure. However, the population of India would see it’s largest rate of growth in the years following the country’s independence from the British Empire in 1948, where the population would rise from 358 million to over one billion by the turn of the century, making India the second country to pass the billion person milestone. While the rate of growth has slowed somewhat as India begins a demographics shift, the country’s population has continued to grow dramatically throughout the 21st century, and in 2020, India is estimated to have a population of just under 1.4 billion, well over a billion more people than one century previously. Today, approximately 18% of the Earth’s population lives in India, and it is estimated that India will overtake China to become the most populous country in the world within the next five years.
Facebook
TwitterThe population of India is divided into several groups based on social, educational, and financial statuses. The formation of these groups is a result of the historical social structure of the country. Between 2019 and 2021, Other Backward Class (OBC) constituted the largest part of Indian households accounting for about ** percent. On the other hand, Schedule Tribes formed about *** percent of households. How prosperous is India’s caste-based society? India suffers from extreme social and economic inequality. The combined share of Schedule Tribe and Schedule Caste in the affluent population of India was less than ** percent. Contrary to this, economically and socially stronger groups constituted the major part of the affluent population. Hence, indicating a strong relationship between caste and prosperity. India’s thoughts on caste-based reservation The constitution of India provides reservations to the weaker sections of the society for their upliftment and growth. However, the need for reservation has increased with time, making the whole situation even more complicated. People are divided over the existence of a system that provides preference to certain castes or sects. In a survey conducted in 2016 about providing employment reservation to young adults of Schedule Caste and Schedule Tribe, many people expressed opposition. More than ** percent of opposition came from upper Hindu caste. Minimum opposition was observed from the people belonging to Schedule Tribe and Schedule Caste.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in India was estimated at 1398.6 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - India Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe median age in India was 27 years old in 2020, meaning half the population was older than that, half younger. This figure was lowest in 1970, at 18.1 years, and was projected to increase to 47.8 years old by 2100. Aging in India India has the second largest population in the world, after China. Because of the significant population growth of the past years, the age distribution remains skewed in favor of the younger age bracket. This tells a story of rapid population growth, but also of a lower life expectancy. Economic effects of a young population Many young people means that the Indian economy must support a large number of students, who demand education from the economy but cannot yet work. Educating the future workforce will be important, because the economy is growing as well and is one of the largest in the world. Failing to do this could lead to high youth unemployment and political consequences. However, a productive and young workforce could provide huge economic returns for India.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for India Urban Population Percent Of Total
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 1 cities in the Forsyth County, GA by Indian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterIn 2021, the content and service index score in India was ****, indicating a significant increase from **** in 2015. The source defined the content and services as the availability and accessibility of relevant online content and service to the Indian population. The GSMA’s mobile connectivity index score gave an insight into the digital divide across the country.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of this study was to investigate the relationship among Lithuanian, Latvian, Indian, and some other populations through a genome-wide data analysis of single nucleotide polymorphisms (SNPs). Limited data of Baltic populations were mostly compared with geographically closer modern and ancient populations in the past, but no previous investigation has explored their genetic relationships with distant populations, like the ones of India, in detail. To address this, we collected and merged genome-wide SNP data from diverse publicly available sources to create a comprehensive dataset with a substantial sample size especially from Lithuanians and Latvians. Principal component analysis (PCA) and admixture analysis methods were employed to assess the genetic structure and relationship among the populations under investigation. Additionally, we estimated an effective population size (Ne) and divergence time to shed light on potential past events between the Baltic and Indian populations. To gain a broader perspective, we also incorporated ancient and modern populations from different continents into our analyses. Our findings revealed that the Balts, unsurprisingly, have a closer genetic affinity with individuals from Indian population who speak Indo-European languages, compared to other Indian linguistic groups (such as speakers of Dravidian, Austroasiatic, and Sino-Tibetan languages). However, when compared to other populations from the European continent, which also speak Indo-European and some Uralic languages, the Balts did not exhibit a stronger resemblance to Indo-European-speaking Indians. In conclusion, this study provides an overview of the genetic relationship and structure of the populations investigated, along with insights into their divergence times.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Forecasting Results of the population structures for China, India, and Vietnam (Unit: %).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for India Population Ages 0 14 Total
Facebook
TwitterThis statistic depicts the age distribution of India from 2013 to 2023. In 2023, about 25.06 percent of the Indian population fell into the 0-14 year category, 68.02 percent into the 15-64 age group and 6.92 percent were over 65 years of age. Age distribution in India India is one of the largest countries in the world and its population is constantly increasing. India’s society is categorized into a hierarchically organized caste system, encompassing certain rights and values for each caste. Indians are born into a caste, and those belonging to a lower echelon often face discrimination and hardship. The median age (which means that one half of the population is younger and the other one is older) of India’s population has been increasing constantly after a slump in the 1970s, and is expected to increase further over the next few years. However, in international comparison, it is fairly low; in other countries the average inhabitant is about 20 years older. But India seems to be on the rise, not only is it a member of the BRIC states – an association of emerging economies, the other members being Brazil, Russia and China –, life expectancy of Indians has also increased significantly over the past decade, which is an indicator of access to better health care and nutrition. Gender equality is still non-existant in India, even though most Indians believe that the quality of life is about equal for men and women in their country. India is patriarchal and women still often face forced marriages, domestic violence, dowry killings or rape. As of late, India has come to be considered one of the least safe places for women worldwide. Additionally, infanticide and selective abortion of female fetuses attribute to the inequality of women in India. It is believed that this has led to the fact that the vast majority of Indian children aged 0 to 6 years are male.