Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft Excel to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.
The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
The data set contains the data presented in the journal articles. The data set is in the form of an Excel spreadsheet. Each table in the journal article is a unique worksheet in the Excel spreadsheet. The other worksheet in the spreadsheet contains the raw data used to calculate the data presented in the journal article. This dataset is associated with the following publication: Gallardo, V., B. Morris, and E. Rhodes. The Use of Hollow Fiber Dialysis Filters Operated in Axial Flow Mode for Recovery of Microorganisms in Large Volume Water Samples with High Loadings of Particulate Matter. The Journal of Microbiology. Springer, New York, NY, USA, ., (2019).
The 2003 Agriculture Sample Census was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmer organisations, etc. As a result the dataset is both more numerous in its sample and detailed in its scope compared to previous censuses and surveys. To date this is the most detailed Agricultural Census carried out in Africa.
The census was carried out in order to: · Identify structural changes if any, in the size of farm household holdings, crop and livestock production, farm input and implement use. It also seeks to determine if there are any improvements in rural infrastructure and in the level of agriculture household living conditions; · Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stake holders. · Establish baseline data for the measurement of the impact of high level objectives of the Agriculture Sector Development Programme (ASDP), National Strategy for Growth and Reduction of Poverty (NSGRP) and other rural development programs and projects. · Obtain benchmark data that will be used to address specific issues such as: food security, rural poverty, gender, agro-processing, marketing, service delivery, etc.
Tanzania Mainland and Zanzibar
Large scale, small scale and community farms.
Census/enumeration data [cen]
The Mainland sample consisted of 3,221 villages. These villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household based surveys in the country. The National Master Sample was developed from the 2002 Population and Housing Census. The total Mainland sample was 48,315 agricultural households. In Zanzibar a total of 317 enumeration areas (EAs) were selected and 4,755 agriculture households were covered. Nationwide, all regions and districts were sampled with the exception of three urban districts (two from Mainland and one from Zanzibar).
In both Mainland and Zanzibar, a stratified two stage sample was used. The number of villages/EAs selected for the first stage was based on a probability proportional to the number of villages in each district. In the second stage, 15 households were selected from a list of farming households in each selected Village/EA, using systematic random sampling, with the village chairpersons assisting to locate the selected households.
Face-to-face [f2f]
The census covered agriculture in detail as well as many other aspects of rural development and was conducted using three different questionnaires: • Small scale questionnaire • Community level questionnaire • Large scale farm questionnaire
The small scale farm questionnaire was the main census instrument and it includes questions related to crop and livestock production and practices; population demographics; access to services, resources and infrastructure; and issues on poverty, gender and subsistence versus profit making production unit.
The community level questionnaire was designed to collect village level data such as access and use of common resources, community tree plantation and seasonal farm gate prices.
The large scale farm questionnaire was administered to large farms either privately or corporately managed.
Questionnaire Design The questionnaires were designed following user meetings to ensure that the questions asked were in line with users data needs. Several features were incorporated into the design of the questionnaires to increase the accuracy of the data: • Where feasible all variables were extensively coded to reduce post enumeration coding error. • The definitions for each section were printed on the opposite page so that the enumerator could easily refer to the instructions whilst interviewing the farmer. • The responses to all questions were placed in boxes printed on the questionnaire, with one box per character. This feature made it possible to use scanning and Intelligent Character Recognition (ICR) technologies for data entry. • Skip patterns were used to reduce unnecessary and incorrect coding of sections which do not apply to the respondent. • Each section was clearly numbered, which facilitated the use of skip patterns and provided a reference for data type coding for the programming of CSPro, SPSS and the dissemination applications.
Data processing consisted of the following processes: · Data entry · Data structure formatting · Batch validation · Tabulation
Data Entry Scanning and ICR data capture technology for the small holder questionnaire were used on the Mainland. This not only increased the speed of data entry, it also increased the accuracy due to the reduction of keystroke errors. Interactive validation routines were incorporated into the ICR software to track errors during the verification process. The scanning operation was so successful that it is highly recommended for adoption in future censuses/surveys. In Zanzibar all data was entered manually using CSPro.
Prior to scanning, all questionnaires underwent a manual cleaning exercise. This involved checking that the questionnaire had a full set of pages, correct identification and good handwriting. A score was given to each questionnaire based on the legibility and the completeness of enumeration. This score will be used to assess the quality of enumeration and supervision in order to select the best field staff for future censuses/surveys.
CSPro was used for data entry of all Large Scale Farm and community based questionnaires due to the relatively small number of questionnaires. It was also used to enter data from the 2,880 small holder questionnaires that were rejected by the ICR extraction application.
Data Structure Formatting A program was developed in visual basic to automatically alter the structure of the output from the scanning/extraction process in order to harmonise it with the manually entered data. The program automatically checked and changed the number of digits for each variable, the record type code, the number of questionnaires in the village, the consistency of the Village ID Code and saved the data of one village in a file named after the village code.
Batch Validation A batch validation program was developed in order to identify inconsistencies within a questionnaire. This is in addition to the interactive validation during the ICR extraction process. The procedures varied from simple range checking within each variable to the more complex checking between variables. It took six months to screen, edit and validate the data from the smallholder questionnaires. After the long process of data cleaning, tabulations were prepared based on a pre-designed tabulation plan.
Tabulations Statistical Package for Social Sciences (SPSS) was used to produce the Census tabulations and Microsoft Excel was used to organize the tables and compute additional indicators. Excel was also used to produce charts while ArcView and Freehand were used for the maps.
Analysis and Report Preparation The analysis in this report focuses on regional comparisons, time series and national production estimates. Microsoft Excel was used to produce charts; ArcView and Freehand were used for maps, whereas Microsoft Word was used to compile the report.
Data Quality A great deal of emphasis was placed on data quality throughout the whole exercise from planning, questionnaire design, training, supervision, data entry, validation and cleaning/editing. As a result of this, it is believed that the census is highly accurate and representative of what was experienced at field level during the Census year. With very few exceptions, the variables in the questionnaire are within the norms for Tanzania and they follow expected time series trends when compared to historical data. Standard Errors and Coefficients of Variation for the main variables are presented in the Technical Report (Volume I).
The Sampling Error found on page (21) up to page (22) in the Technical Report for Agriculture Sample Census Survey 2002-2003
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This excel file contains PMID or web link and the source for each GWAS summary statistics analyzed in this study. (XLSX)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Chinese Reference Population (CRP) phantoms dataset encompass 30 phantoms available in both voxel and NURBS formats, with age in 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18 years and adult male and female, as well as 4 pregnant women and fetus in early pregnancy, first trimester, second trimester and third trimester.
All data are stored on Zenodo and can be publicly accessed.
https://assets.publishing.service.gov.uk/media/5a7f0959ed915d74e6228097/acs0501.xls">Travel time, destination and origin indicators to Employment centres by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 255 MB)
https://assets.publishing.service.gov.uk/media/5a7ddd3bed915d2acb6ee98b/acs0502.xls">Travel time, destination and origin indicators to Primary schools by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 160 MB)
https://assets.publishing.service.gov.uk/media/5a7e3df1ed915d74e6225083/acs0503.xls">Travel time, destination and origin indicators to Secondary schools by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 201 MB)
https://assets.publishing.service.gov.uk/media/5a7e26d940f0b62305b8121b/acs0504.xls">Travel time, destination and origin indicators to Further Education institutions by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 136 MB)
https://assets.publishing.service.gov.uk/media/5a7eb20ced915d74e6225e52/acs0505.xls">Travel time, destination and origin indicators to GPs by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 181 MB)
https://assets.publishing.service.gov.uk/media/5a7f0a94ed915d74e62280e5/acs0506.xls">Travel time, destination and origin indicators to Hospitals by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 184 MB)
https://assets.publishing.service.gov.uk/media/5a7f0b2440f0b62305b84bf0/acs0507.xls">Travel time, destination and origin indicators to Food stores by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 200 MB)
https://assets.publishing.service.gov.uk/media/5a7da9e6e5274a5eb14e6702/acs0508.xls">Travel time, destination and origin indicators to Town centres by mode of travel, Lower Super Output Area (LSOA), England, from 2007 (MS Excel Spreadsheet, 152 MB)
Journey time statistics
Email mailto:subnational.stats@dft.gov.uk">subnational.stats@dft.gov.uk
Media enquiries 0300 7777 878
The intention is to collect data for the calendar year 2009 (or the nearest year for which each business keeps its accounts. The survey is considered a one-off survey, although for accurate NAs, such a survey should be conducted at least every five years to enable regular updating of the ratios, etc., needed to adjust the ongoing indicator data (mainly VAGST) to NA concepts. The questionnaire will be drafted by FSD, largely following the previous BAS, updated to current accounting terminology where necessary. The questionnaire will be pilot tested, using some accountants who are likely to complete a number of the forms on behalf of their business clients, and a small sample of businesses. Consultations will also include Ministry of Finance, Ministry of Commerce, Industry and Labour, Central Bank of Samoa (CBS), Samoa Tourism Authority, Chamber of Commerce, and other business associations (hotels, retail, etc.).
The questionnaire will collect a number of items of information about the business ownership, locations at which it operates and each establishment for which detailed data can be provided (in the case of complex businesses), contact information, and other general information needed to clearly identify each unique business. The main body of the questionnaire will collect data on income and expenses, to enable value added to be derived accurately. The questionnaire will also collect data on capital formation, and will contain supplementary pages for relevant industries to collect volume of production data for selected commodities and to collect information to enable an estimate of value added generated by key tourism activities.
The principal user of the data will be FSD which will incorporate the survey data into benchmarks for the NA, mainly on the current published production measure of GDP. The information on capital formation and other relevant data will also be incorporated into the experimental estimates of expenditure on GDP. The supplementary data on volumes of production will be used by FSD to redevelop the industrial production index which has recently been transferred under the SBS from the CBS. The general information about the business ownership, etc., will be used to update the Business Register.
Outputs will be produced in a number of formats, including a printed report containing descriptive information of the survey design, data tables, and analysis of the results. The report will also be made available on the SBS website in “.pdf” format, and the tables will be available on the SBS website in excel tables. Data by region may also be produced, although at a higher level of aggregation than the national data. All data will be fully confidentialised, to protect the anonymity of all respondents. Consideration may also be made to provide, for selected analytical users, confidentialised unit record files (CURFs).
A high level of accuracy is needed because the principal purpose of the survey is to develop revised benchmarks for the NA. The initial plan was that the survey will be conducted as a stratified sample survey, with full enumeration of large establishments and a sample of the remainder.
National Coverage
The main statistical unit to be used for the survey is the establishment. For simple businesses that undertake a single activity at a single location there is a one-to-one relationship between the establishment and the enterprise. For large and complex enterprises, however, it is desirable to separate each activity of an enterprise into establishments to provide the most detailed information possible for industrial analysis. The business register will need to be developed in such a way that records the links between establishments and their parent enterprises. The business register will be created from administrative records and may not have enough information to recognize all establishments of complex enterprises. Large businesses will be contacted prior to the survey post-out to determine if they have separate establishments. If so, the extended structure of the enterprise will be recorded on the business register and a questionnaire will be sent to the enterprise to be completed for each establishment.
SBS has decided to follow the New Zealand simplified version of its statistical units model for the 2009 BAS. Future surveys may consider location units and enterprise groups if they are found to be useful for statistical collections.
It should be noted that while establishment data may enable the derivation of detailed benchmark accounts, it may be necessary to aggregate up to enterprise level data for the benchmarks if the ongoing data used to extrapolate the benchmark forward (mainly VAGST) are only available at the enterprise level.
The BAS's covered all employing units, and excluded small non-employing units such as the market sellers. The surveys also excluded central government agencies engaged in public administration (ministries, public education and health, etc.). It only covers businesses that pay the VAGST. (Threshold SAT$75,000 and upwards).
Sample survey data [ssd]
-Total Sample Size was 1240 -Out of the 1240, 902 successfully completed the questionnaire. -The other remaining 338 either never responded or were omitted (some businesses were ommitted from the sample as they do not meet the requirement to be surveyed) -Selection was all employing units paying VAGST (Threshold SAT $75,000 upwards)
WILL CONFIRM LATER!!
OSO LE MEA E LE FAASA...AEA :-)
Mail Questionnaire [mail]
Supplementary Pages Additional pages have been prepared to collect data for a limited range of industries. 1.Production data. To rebase and redevelop the Industrial Production Index (IPI), it is intended to collect volume of production information from a selection of large manufacturing businesses. The selection of businesses and products is critical to the usefulness of the IPI. The products must be homogeneous, and be of enough importance to the economy to justify collecting the data. Significance criteria should be established for the selection of products to include in the IPI, and the 2009 BAS provides an opportunity to collect benchmark data for a range of products known to be significant (based on information in the existing IPI, CPI weights, export data, etc.) as well as open questions for respondents to provide information on other significant products. 2.Tourism. There is a strong demand for estimates of tourism value added. To estimate tourism value added using the international standard Tourism Satellite Account methodology requires the use of an input-output table, which is beyond the capacity of SBS at present. However, some indicative estimates of the main parts of the economy influenced by tourism can be derived if the necessary data are collected. Tourism is a demand concept, based on defining tourists (the international standard includes both international and domestic tourists), what products are characteristically purchased by tourists, and which industries supply those products. Some questions targeted at those industries that have significant involvement with tourists (hotels, restaurants, transport and tour operators, vehicle hire, etc.), on how much of their income is sourced from tourism would provide valuable indicators of the size of the direct impact of tourism.
Partial imputation was done at the time of receipt of questionnaires, after follow-up procedures to obtain fully completed questionnaires have been followed. Imputation followed a process, i.e., apply ratios from responding units in the imputation cell to the partial data that was supplied. Procedures were established during the editing stage (a) to preserve the integrity of the questionnaires as supplied by respondents, and (b) to record all changes made to the questionnaires during editing. If SBS staff writes on the form, for example, this should only be done in red pen, to distinguish the alterations from the original information.
Additional edit checks were developed, including checking against external data at enterprise/establishment level. External data to be checked against include VAGST and SNPF for turnover and purchases, and salaries and wages and employment data respectively. Editing and imputation processes were undertaken by FSD using Excel.
NOT APPLICABLE!!
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft Excel to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.