Facebook
Twitterhttps://www.comodo.com/home/internet-security/updates/vdp/database.phphttps://www.comodo.com/home/internet-security/updates/vdp/database.php
The complete Comodo Internet Security database is available for download...
Facebook
Twitterthe European Hepatitis C Virus Database (euHCVdb, euhcvdb.lyon.inserm.fr), a collection of computer-annotated sequences based on reference genomes.mainly dedicated to HCV protein sequences, 3D structures and functional analyses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset: N. Thakur, “MonkeyPox2022Tweets: The first public Twitter dataset on the 2022 MonkeyPox outbreak,” Preprints, 2022, DOI: 10.20944/preprints202206.0172.v2
Abstract The world is currently facing an outbreak of the monkeypox virus, and confirmed cases have been reported from 28 countries. Following a recent “emergency meeting”, the World Health Organization is considering whether the outbreak should be assessed as a “potential public health emergency of international concern”, as was done for the COVID-19 and Ebola outbreaks in the past. During this time, people from all over the world are using social media platforms, such as Twitter, for information seeking and sharing related to the outbreak, as well as for familiarizing themselves with the guidelines and protocols that are being recommended by various policy-making bodies to reduce the spread of the virus. This is resulting in the generation of tremendous amounts of Big Data related to such paradigms of social media behavior. Mining this Big Data and compiling it in the form of a dataset can serve a wide range of use-cases and applications such as analysis of public opinions, interests, views, perspectives, attitudes, and sentiment towards this outbreak. Therefore, this work presents MonkeyPox2022Tweets, a dataset of Tweets related to the 2022 monkeypox outbreak that were posted on Twitter since the first detected case of this outbreak on May 7, 2022. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter, as well as with the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management.
Data Description The dataset consists of a total of 102,452 tweet IDs of the same number of tweets about monkeypox that were posted on Twitter from 7th May 2022 to 26th June 2022 (the most recent date at the time of dataset upload). The Tweet IDs are presented in 5 different files based on the timelines of the associated tweets. The following are the details of these dataset files
Filename: TweetIDs_Part1.txt (No. of Tweet IDs: 13926, Date Range of the associated Tweet IDs: May 7, 2022 to May 21, 2022) Filename: TweetIDs_Part2.txt (No. of Tweet IDs: 17705, Date Range of the associated Tweet IDs: May 21, 2022 to May 27, 2022) Filename: TweetIDs_Part3.txt (No. of Tweet IDs: 17585, Date Range of the associated Tweet IDs: May 27, 2022 to June 5, 2022) Filename: TweetIDs_Part4.txt (No. of Tweet IDs: 19718, Date Range of the associated Tweet IDs: June 5, 2022 to June 11, 2022) Filename: TweetIDs_Part5.txt (No. of Tweet IDs: 33518, Date Range of the associated Tweet IDs: June 12, 2022 to June 26, 2022)
The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accurate and rapid characterization of influenza A virus (IAV) hemagglutinin (HA) and neuraminidase (NA) sequences with respect to subtype and clade is at the basis of extended diagnostic services and implicit to molecular epidemiologic studies. ClassyFlu is a new tool and web service for the classification of IAV sequences of the HA and NA gene into subtypes and phylogenetic clades using discriminatively trained profile hidden Markov models (HMMs), one for each subtype or clade. ClassyFlu merely requires as input unaligned, full-length or partial HA or NA DNA sequences. It enables rapid and highly accurate assignment of HA sequences to subtypes H1–H17 but particularly focusses on the finer grained assignment of sequences of highly pathogenic avian influenza viruses of subtype H5N1 according to the cladistics proposed by the H5N1 Evolution Working Group. NA sequences are classified into subtypes N1–N10. ClassyFlu was compared to semiautomatic classification approaches using BLAST and phylogenetics and additionally for H5 sequences to the new “Highly Pathogenic H5N1 Clade Classification Tool” (IRD-CT) proposed by the Influenza Research Database. Our results show that both web tools (ClassyFlu and IRD-CT), although based on different methods, are nearly equivalent in performance and both are more accurate and faster than semiautomatic classification. A retraining of ClassyFlu to altered cladistics as well as an extension of ClassyFlu to other IAV genome segments or fragments thereof is undemanding. This is exemplified by unambiguous assignment to a distinct cluster within subtype H7 of sequences of H7N9 viruses which emerged in China early in 2013 and caused more than 130 human infections. http://bioinf.uni-greifswald.de/ClassyFlu is a free web service. For local execution, the ClassyFlu source code in PERL is freely available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cyber attacks are a growing concern for small businesses during COVID-19 . Be Protected While You Work. Upgrade Your Small Business's Virus Protection Today! Before going for a Cyber security solutions for small to mid-sized businesses deliver enterprise-level protection.
Download this (Checklist for a Small Firm's Cybersecurity Program 2020-2021) data set to deploy secure functioning of various aspects of your small business including, employee data, website and more.This checklist is provided to
assist small member firms with limited resources to establish a cybersecurity program to identify and assess cybersecurity threats,
protect assets from cyber intrusions,
detect when their systems and assets have been compromised,
plan for the response when a compromise occurs and implement a plan to recover lost, stolen or unavailable assets.
Train employees in security principles.
Protect information, computers, and networks from malware attacks.
Provide firewall security for your Internet connection.
Create a mobile device action plan.
Make backup copies of important business data and information.
Learn about the threats and how to protect your website.
Protect Your Small Business site.
Learn the basics for protecting your business web sites from cyber attacks at WP Hacked Help Blog
Created With Inputs From Security Experts at WP Hacked Help - Pioneer In WordPress Malware Removal & Security
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bold: genes overlapping with the SARS-CoV list.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Results for different basic classifiers (mean±SD) by using varied numbers of supplementary training data, trained and tested in 10-fold cross-validation on the virus dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pairwise comparison of the H5 HA classification of full sequences.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The outbreak of coronavirus disease 2019 (COVID-19) at the end of 2019 affected global health. Its infection agent was called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wearing a mask, maintaining social distance, and vaccination are effective ways to prevent infection of SARS-CoV-2, but none of them help infected people. Targeting the enzymes of SARS-CoV-2 is an effective way to stop the replication of the virus in infected people and treat COVID-19 patients. SARS-CoV-2 main protease is a therapeutic target which the inhibition of its enzymatic activity prevents from the replication of SARS-CoV-2. A large database of molecules has been searched to identify new inhibitors for SARS-CoV-2 main protease enzyme. At the first step, ligand screening based on similarity search was used to select similar compounds to known SARS-CoV-2 main protease inhibitors. Then molecules with better predicted pharmacokinetic properties were selected. Structure-based virtual screening based on the application of molecular docking and molecular dynamics simulation methods was used to select more effective inhibitors among selected molecules in previous step. Finally two compounds were considered as SARS-CoV-2 main protease inhibitors.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://www.comodo.com/home/internet-security/updates/vdp/database.phphttps://www.comodo.com/home/internet-security/updates/vdp/database.php
The complete Comodo Internet Security database is available for download...