NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Lifesciences Data Mining and Visualization was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing demand for sophisticated data analysis tools in the life sciences sector, advancements in analytical technologies, and the rising volume of complex biological data generated from research and clinical trials.
One of the primary growth factors for the Lifesciences Data Mining and Visualization market is the burgeoning amount of data generated from various life sciences applications, such as genomics, proteomics, and clinical trials. With the advent of high-throughput technologies, researchers and healthcare professionals are now capable of generating vast amounts of data, which necessitates the use of advanced data mining and visualization tools to derive actionable insights. These tools not only help in managing and interpreting large datasets but also in uncovering hidden patterns and relationships, thereby accelerating research and development processes.
Another significant driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) algorithms in the life sciences domain. These technologies have proven to be invaluable in enhancing data analysis capabilities, enabling more precise and predictive modeling of biological systems. By integrating AI and ML with data mining and visualization platforms, researchers can achieve higher accuracy in identifying potential drug targets, understanding disease mechanisms, and personalizing treatment plans. This trend is expected to continue, further propelling the market's growth.
Moreover, the rising emphasis on personalized medicine and the need for precision in healthcare is fueling the demand for data mining and visualization tools. Personalized medicine relies heavily on the analysis of individual genetic, proteomic, and metabolomic profiles to tailor treatments specifically to patients' unique characteristics. The ability to visualize these complex datasets in an understandable and actionable manner is critical for the successful implementation of personalized medicine strategies, thereby boosting the demand for advanced data analysis tools.
From a regional perspective, North America is anticipated to dominate the Lifesciences Data Mining and Visualization market, owing to the presence of a robust healthcare infrastructure, significant investments in research and development, and a high adoption rate of advanced technologies. The European market is also expected to witness substantial growth, driven by increasing government initiatives to support life sciences research and the presence of leading biopharmaceutical companies. The Asia Pacific region is projected to experience the fastest growth, attributed to the expanding healthcare sector, rising investments in biotechnology research, and the increasing adoption of data analytics solutions.
The Lifesciences Data Mining and Visualization market is segmented by component into software and services. The software segment is expected to hold a significant share of the market, driven by the continuous advancements in data mining algorithms and visualization techniques. Software solutions are critical in processing large volumes of complex biological data, facilitating real-time analysis, and providing intuitive visual representations that aid in decision-making. The increasing integration of AI and ML into these software solutions is further enhancing their capabilities, making them indispensable tools in life sciences research.
The services segment, on the other hand, is projected to grow at a considerable rate, as organizations seek specialized expertise to manage and interpret their data. Services include consulting, implementation, and maintenance, as well as training and support. The demand for these services is driven by the need to ensure optimal utilization of data mining software and to keep up with the rapid pace of technological advancements. Moreover, many life sciences organizations lack the in-house expertise required to handle large-scale data analytics projects, thereby turning to external service providers for assistance.
Within the software segment, there is a growing trend towards the development of integrated platforms that combine multiple functionalities, such as data collection, pre
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data mining software market size was valued at USD 7.2 billion in 2023 and is projected to reach USD 15.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.7% during the forecast period. This growth is driven primarily by the increasing adoption of big data analytics and the rising demand for business intelligence across various industries. As businesses increasingly recognize the value of data-driven decision-making, the market is expected to witness substantial growth.
One of the significant growth factors for the data mining software market is the exponential increase in data generation. With the proliferation of internet-enabled devices and the rapid advancement of technologies such as the Internet of Things (IoT), there is a massive influx of data. Organizations are now more focused than ever on harnessing this data to gain insights, improve operations, and create a competitive advantage. This has led to a surge in demand for advanced data mining tools that can process and analyze large datasets efficiently.
Another driving force is the growing need for personalized customer experiences. In industries such as retail, healthcare, and BFSI, understanding customer behavior and preferences is crucial. Data mining software enables organizations to analyze customer data, segment their audience, and deliver personalized offerings, ultimately enhancing customer satisfaction and loyalty. This drive towards personalization is further fueling the adoption of data mining solutions, contributing significantly to market growth.
The integration of artificial intelligence (AI) and machine learning (ML) technologies with data mining software is also a key growth factor. These advanced technologies enhance the capabilities of data mining tools by enabling them to learn from data patterns and make more accurate predictions. The convergence of AI and data mining is opening new avenues for businesses, allowing them to automate complex tasks, predict market trends, and make informed decisions more swiftly. The continuous advancements in AI and ML are expected to propel the data mining software market over the forecast period.
Regionally, North America holds a significant share of the data mining software market, driven by the presence of major technology companies and the early adoption of advanced analytics solutions. The Asia Pacific region is also expected to witness substantial growth due to the rapid digital transformation across various industries and the increasing investments in data infrastructure. Additionally, the growing awareness and implementation of data-driven strategies in emerging economies are contributing to the market expansion in this region.
Text Mining Software is becoming an integral part of the data mining landscape, offering unique capabilities to analyze unstructured data. As organizations generate vast amounts of textual data from various sources such as social media, emails, and customer feedback, the need for specialized tools to extract meaningful insights is growing. Text Mining Software enables businesses to process and analyze this data, uncovering patterns and trends that were previously hidden. This capability is particularly valuable in industries like marketing, customer service, and research, where understanding the nuances of language can lead to more informed decision-making. The integration of text mining with traditional data mining processes is enhancing the overall analytical capabilities of organizations, allowing them to derive comprehensive insights from both structured and unstructured data.
The data mining software market is segmented by components, which primarily include software and services. The software segment encompasses various types of data mining tools that are used for analyzing and extracting valuable insights from raw data. These tools are designed to handle large volumes of data and provide advanced functionalities such as predictive analytics, data visualization, and pattern recognition. The increasing demand for sophisticated data analysis tools is driving the growth of the software segment. Enterprises are investing in these tools to enhance their data processing capabilities and derive actionable insights.
Within the software segment, the emergence of cloud-based data mining solutions is a notable trend. Cloud-based solutions offer several advantages, including s
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Opal is Australia's national gemstone, however most significant opal discoveries were made in the early 1900's - more than 100 years ago - until recently. Currently there is no formal exploration model for opal, meaning there are no widely accepted concepts or methodologies available to suggest where new opal fields may be found. As a consequence opal mining in Australia is a cottage industry with the majority of opal exploration focused around old opal fields. The EarthByte Group has developed a new opal exploration methodology for the Great Artesian Basin. The work is based on the concept of applying “big data mining” approaches to data sets relevant for identifying regions that are prospective for opal. The group combined a multitude of geological and geophysical data sets that were jointly analysed to establish associations between particular features in the data with known opal mining sites. A “training set” of known opal localities (1036 opal mines) was assembled, using those localities, which were featured in published reports and on maps. The data used include rock types, soil type, regolith type, topography, radiometric data and a stack of digital palaeogeographic maps. The different data layers were analysed via spatio-temporal data mining combining the GPlates PaleoGIS software (www.gplates.org) with the Orange data mining software (orange.biolab.si) to produce the first opal prospectivity map for the Great Artesian Basin. One of the main results of the study is that the geological conditions favourable for opal were found to be related to a particular sequence of surface environments over geological time. These conditions involved alternating shallow seas and river systems followed by uplift and erosion. The approach reduces the entire area of the Great Artesian Basin to a mere 6% that is deemed to be prospective for opal exploration. The work is described in two companion papers in the Australian Journal of Earth Sciences and Computers and Geosciences.
Age-coded multi-layered geological datasets are becoming increasingly prevalent with the surge in open-access geodata, yet there are few methodologies for extracting geological information and knowledge from these data. We present a novel methodology, based on the open-source GPlates software in which age-coded digital palaeogeographic maps are used to “data-mine” spatio-temporal patterns related to the occurrence of Australian opal. Our aim is to test the concept that only a particular sequence of depositional/erosional environments may lead to conditions suitable for the formation of gem quality sedimentary opal. Time-varying geographic environment properties are extracted from a digital palaeogeographic dataset of the eastern Australian Great Artesian Basin (GAB) at 1036 opal localities. We obtain a total of 52 independent ordinal sequences sampling 19 time slices from the Early Cretaceous to the present-day. We find that 95% of the known opal deposits are tied to only 27 sequences all comprising fluvial and shallow marine depositional sequences followed by a prolonged phase of erosion. We then map the total area of the GAB that matches these 27 opal-specific sequences, resulting in an opal-prospective region of only about 10% of the total area of the basin. The key patterns underlying this association involve only a small number of key environmental transitions. We demonstrate that these key associations are generally absent at arbitrary locations in the basin. This new methodology allows for the simplification of a complex time-varying geological dataset into a single map view, enabling straightforward application for opal exploration and for future co-assessment with other datasets/geological criteria. This approach may help unravel the poorly understood opal formation process using an empirical spatio-temporal data-mining methodology and readily available datasets to aid hypothesis testing.
Andrew Merdith - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-7564-8149
Thomas Landgrebe - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia
Adriana Dutkiewicz - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia
R. Dietmar Müller - EarthByte Research Group, School of Geosciences, The University of Sydney, Australia. ORCID: 0000-0002-3334-5764
This collection contains geological data from Australia used for data mining in the publications Merdith et al. (2013) and Landgrebe et al. (2013). The resulting maps of opal prospectivity are also included.
Note: For details on the files included in this data collection, see “Description_of_Resources.txt”.
Note: For information on file formats and what programs to use to interact with various file formats, see “File_Formats_and_Recommended_Programs.txt”.
For more information on this data collection, and links to other datasets from the EarthByte Research Group please visit EarthByte
For more information about using GPlates, including tutorials and a user manual please visit GPlates or EarthByte
https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Overview and Concepts of Data Warehousing of Data Warehousing & Data Mining, 7th Semester , Information Technology
https://www.thebusinessresearchcompany.com/privacy-policyhttps://www.thebusinessresearchcompany.com/privacy-policy
Global Data Mining Tools market size is expected to reach $2.13 billion by 2029 at 12.9%, segmented as by tools, data mining software, data visualization tools, data preparation tools, predictive analytics tools, reporting tools
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SPHERE is students' performance in physics education research dataset. It is presented as a multi-domain learning dataset of students’ performance on physics that has been collected through several research-based assessments (RBAs) established by the physics education research (PER) community. A total of 497 eleventh-grade students were involved from three large and a small public high school located in a suburban district of a high-populated province in Indonesia. Some variables related to demographics, accessibility to literature resources, and students’ physics identity are also investigated. Some RBAs utilized in this data were selected based on concepts learned by the students in the Indonesian physics curriculum. We commenced the survey of students’ understanding on Newtonian mechanics at the end of the first semester using Force Concept Inventory (FCI) and Force and Motion Conceptual Evaluation (FMCE). In the second semester, we assessed the students’ scientific abilities and learning attitude through Scientific Abilities Assessment Rubrics (SAAR) and the Colorado Learning Attitudes about Science Survey (CLASS) respectively. The conceptual assessments were continued at the second semester measured through Rotational and Rolling Motion Conceptual Survey (RRMCS), Fluid Mechanics Concept Inventory (FMCI), Mechanical Waves Conceptual Survey (MWCS), Thermal Concept Evaluation (TCE), and Survey of Thermodynamic Processes and First and Second Laws (STPFaSL). We expect SPHERE could be a valuable dataset for supporting the advancement of the PER field particularly in quantitative studies. For example, there is a need to help advance research on using machine learning and data mining techniques in PER that might face challenges due to the unavailable dataset for the specific purpose of PER studies. SPHERE can be reused as a students’ performance dataset on physics specifically dedicated for PER scholars which might be willing to implement machine learning techniques in physics education.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The email numbers of the four months.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Datasets for the publication in the "Computational Materials Science". This is essentially a snapshot of the gitlab repository https://gitlab.com/computational-materials-science/public/publication-data-and-code/2022-data-mining-of-in-situ-tem-experiments that might contain additional updates and scripts. A version of the manuscript can also be found at https://arxiv.org/abs/2206.11355
This research used data mining approaches to better understand factors affecting the formation of secondary organic aerosol (SOA). Although numerous laboratory and computational studies have been completed on SOA formation, it is still challenging to determine factors that most influence SOA formation. Experimental data were based on previous work described by Offenberg et al. (2017), where volume concentrations of SOA were measured in 139 laboratory experiments involving the oxidation of single hydrocarbons under different operating conditions. Three different data mining methods were used, including nearest neighbor, decision tree, and pattern mining. Both decision tree and pattern mining approaches identified similar chemical and experimental conditions that were important to SOA formation. Among these important factors included the number of methyl groups, the number of rings and the presence of dinitrogen pentoxide (N2O5).
This dataset is associated with the following publication: Olson, D., J. Offenberg, M. Lewandowski, T. Kleindienst, K. Docherty, M. Jaoui, J.D. Krug, and T. Riedel. Data mining approaches to understanding the formation of secondary organic aerosol. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 252: 118345, (2021).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Python code generated in the context of the dissertation 'Improving the semantic quality of conceptual models through text mining. A proof of concept' (Postgraduate studies Big Data & Analytics for Business and Management, KU Leuven Faculty of Economics and Business, 2018)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 4 rows and is filtered where the books is Spatial data mining : theory and application. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Technical notes and documentation on the common data model of the project CONCEPT-DM2.
This publication corresponds to the Common Data Model (CDM) specification of the CONCEPT-DM2 project for the implementation of a federated network analysis of the healthcare pathway of type 2 diabetes.
Aims of the CONCEPT-DM2 project:
General aim: To analyse chronic care effectiveness and efficiency of care pathways in diabetes, assuming the relevance of care pathways as independent factors of health outcomes using data from real life world (RWD) from five Spanish Regional Health Systems.
Main specific aims:
Study Design: It is a population-based retrospective observational study centered on all T2D patients diagnosed in five Regional Health Services within the Spanish National Health Service. We will include all the contacts of these patients with the health services using the electronic medical record systems including Primary Care data, Specialized Care data, Hospitalizations, Urgent Care data, Pharmacy Claims, and also other registers such as the mortality and the population register.
Cohort definition: All patients with code of Type 2 Diabetes in the clinical health records
Files included in this publication:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The longitudinal nature of the data motivated temporal trend identification in the pediatric EHR datatypes. Over the past three decades (1980-2018), we identified and quantified the temporal trend of 16,460 EHR concepts across measurement, visit, diagnosis, drug, and procedure datatypes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Top five keyword counts by month.
Data from the article "Unraveling spatial, structural, and social country-level conditions for the emergence of the foreign fighter phenomenon: an exploratory data mining approach to the case of ISIS", by Agustin Pájaro, Ignacio J. Duran and Pablo Rodrigo, published in Revista DADOS, v. 65, n. 3, 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data and model checkpoints for paper "Weakly Supervised Concept Map Generation through Task-Guided Graph Translation" by Jiaying Lu, Xiangjue Dong, and Carl Yang. The paper has been accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE).
GT-D2G-*.tar.gz
are model checkpoints for GT-D2G variants. These models are trained by seed=27
.
nyt/dblp/yelp.*.win5.pickle.gz
are initial graphs generated by NLP pipelines.
glove.840B.restaurant.400d.vec.gz
is the pre-trained embedding for the Yelp dataset.
For more instructions, please refer to our GitHub repo.
Market basket analysis with Apriori algorithm
The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.
Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.
Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.
Number of Attributes: 7
https://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">
First, we need to load required libraries. Shortly I describe all libraries.
https://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">
Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.
https://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png">
https://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">
After we will clear our data frame, will remove missing values.
https://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">
To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Technological advances in mass spectrometry (MS) toward more accurate and faster data acquisition result in highly informative but also more complex data sets. Especially the hyphenation of liquid chromatography (LC) and MS yields large data files containing a high amount of compound specific information. Using electrospray-ionization for compounds such as polymers enables highly sensitive detection, yet results in very complex spectra, containing multiply charged ions and adducts. Recent years have seen the development of novel or updated data mining strategies to reduce the MS spectra complexity and to ultimately simplify the data analysis workflow. Among other techniques, the Kendrick mass defect analysis, which graphically highlights compounds containing a given repeating unit, has been revitalized with applications in multiple fields of study, such as lipids and polymers. Especially for the latter, various data mining concepts have been developed, which extend regular Kendrick mass defect analysis to multiply charged ion series. The aim of this work is to collect and subsequently implement these concepts in one of the most popular open-source MS data mining software, i.e., MZmine 2, to make them rapidly available for different MS based measurement techniques and various vendor formats, with a special focus on hyphenated techniques such as LC–MS. In combination with already existing data mining modules, an example data set was processed and simplified, enabling an ever faster evaluation and polymer characterization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The F-measure values of three experiments.
NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.