A series of annual geochemical models were created by RockWare utilizing RockWorks v2021 which were interpolated based on the 1,4-dioxane levels that were measured during 1986 through 2020. In cases where the same intervals were samples on more than one occasion during a given year, the highest 1,4-dioxane values were used. The extent of each annual model were limited to polygons based on only the wells that were sampled during the associated year to eliminate interpolating in areas where data is not present. The annual geochemical models were then filtered based on lithology to eliminate any voxels within the areas deemed impermeable based on lithology. The models were further constrained by utilizing the maximum historical water level surface (MHWLS) grid model to further restrict the interpolation from areas lacking measured data. Finally, the voxel models were converted to annual grid models, in which the cell values are based on the highest value within the corresponding column of voxels.The 2020 plume presented here was created from the RockWorks project database files on June 09, 2021 (Gelman3.sqlite v2021-04-29). The grid file titled 2020-01-01_to_2020-12-31.RwGrd (v20210710) was converted by The Mannik and Smith Group (MSG) to a raster file compatible in ArcGIS and a custom color scheme was applied with the shades becoming darker as concentrations increase. Iso-concentration lines were then generated at the following concentrations: 4 ppb, 7.2 ppb, 85 ppb, 150 ppb, 280 ppb, 500 ppb, 1000 ppb, 1900 ppb, 3000 ppb, and 5000 ppb. The 7.2 ppb lines were created because it represents the current EGLE Part 201 generic residential cleanup criterion (GRCC). The 85 ppb lines were created to represent the Consent Judgement 3 (CJ3) drinking water criteria. The 280 ppb lines were created because that is the new EGLE groundwater-surface water interface (GSI) criterion, and 1900 ppb is the Vapor Intrusion criteria. EGLE is contouring the 4 ppb level because that could become a new trigger for response if detected in sentinel wells if the proposed 4th Consent Judgment is approved.To host the plume files on EGLE's ArcGIS Online, MSG prepared the raster file, contour layer, and the input points used as the input for the specified year model in ArcGIS Pro. The points were labeled using three levels of detail. When zoomed out beyond 1:5000 no labels appear at the points because it would be too dense to read and cover the underlying plume. When zoomed in between 1:5000 and 1:1200, the bore name and maximum 1,4-dioxane at that well in 2020 appear. When zoomed in closer than 1:1200, the labels show the boring name, sample depth interval, and maximum 1,4-dioxane at that interval for 2020. The plume layer was set to 7.5% transparency (this can be adjusted later) and shared as a web tile layer using the ArcGIS Online / Bing Maps / Google Maps tiling scheme for levels of detail 12 – 19.This is a previous version of the data. The newest vintage is available at: Gelman Site of 1,4-Dioxane Contamination - Dioxane Plume (2023 Data).This data is used in the Gelman Site of 1,4-Dioxane Contamination web map (item details). If you have questions regarding the Gelman Sciences, Inc site of contamination contact Chris Svoboda at 517-256-2849 or svobodac@michigan.gov. Report problems or data functionality suggestions to EGLE-Maps@Michigan.gov.
The dataset provides raster gridded estimates of open water and inundated vegetation for the Barotseland Region in Western Zambia. There are a total of 55 images covering the period 2016-2019 at a spatial resolution of 10m. The images were generated using an automatic classification routine applied to Sentinel-1 radar imagery, with classification refinements made using ancillary datasets such as the Global Urban Footprint, and the Height Above Nearest Drainage terrain derivative generated using SRTM digital elevation data. These data are valuable for a range of applications including public health and water resources.
The data describes future land use projections at 1 km^2 resolution developed by CRAFTY-GB. For each of six Shared Socioeconomic Pathways (SSP-RCP) scenarios, gridded land use maps for Great Britain are provided, each as a stacked raster file with seven bands representing land use at each decadal timestep, from 2020 to 2080. CRAFTY-GB is a new agent-based model of the British land system operating at a 1 km^2 resolution and based on a broad range of available land system data . The model is based on linked UK-RCP climate scenarios and UK-SSPs socio-economic pathway (SSP) scenarios, based on global SSPs developed by the Intergovernmental Panel on Climate Change (IPCC). It extrapolates the impact of these on the British Land system at decadal timesteps from 2020-2080.
This dataset provides a 1km resolution raster (gridded) coverage of wooded areas in riparian zones (river- or streamsides) across Great Britain. The areas classified as riparian in this dataset are defined by a 50 metre buffer applied to the CEH 1:50000 watercourse network. Wooded areas within this zone are identified as those classified by the Land Cover Map of Great Britain 2007 as either coniferous or deciduous woodland. The data are aggregated to a 1km resolution.
The Land Cover Map of Great Britain 1990 (1km dominant target class, GB), is a raster digital dataset, providing classification of land cover types into 25 classes, at a 1km resolution. The dataset consists of a 1km grid with a full set of the 25 target classes (or 'sub' classes). Each 1km contains the dominant habitat class, derived from a higher resolution (25m) dataset. The map was produced using supervised maximum likelihood classifications of Landsat 5 Thematic Mapper satellite data. The 25 mapped classes include sea and inland waters, bare, suburban and urban areas, arable farmland, pastures and meadows, rough grass, grass heaths and moors, bracken, dwarf shrub heaths and moorland, scrub, deciduous and evergreen woodland, and upland and lowland bogs. It can potentially be used to plan, manage or monitor agriculture, ecology, conservation, forestry, environmental assessment, water supplies, urban spread, transport, telecommunications, recreation and mineral extraction. The map was produced in the early 1990s by a forerunner of the Centre for Ecology & Hydrology, the Institute of Terrestrial Ecology, at Monks Wood.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
A series of annual geochemical models were created by RockWare utilizing RockWorks v2021 which were interpolated based on the 1,4-dioxane levels that were measured during 1986 through 2020. In cases where the same intervals were samples on more than one occasion during a given year, the highest 1,4-dioxane values were used. The extent of each annual model were limited to polygons based on only the wells that were sampled during the associated year to eliminate interpolating in areas where data is not present. The annual geochemical models were then filtered based on lithology to eliminate any voxels within the areas deemed impermeable based on lithology. The models were further constrained by utilizing the maximum historical water level surface (MHWLS) grid model to further restrict the interpolation from areas lacking measured data. Finally, the voxel models were converted to annual grid models, in which the cell values are based on the highest value within the corresponding column of voxels.The 2020 plume presented here was created from the RockWorks project database files on June 09, 2021 (Gelman3.sqlite v2021-04-29). The grid file titled 2020-01-01_to_2020-12-31.RwGrd (v20210710) was converted by The Mannik and Smith Group (MSG) to a raster file compatible in ArcGIS and a custom color scheme was applied with the shades becoming darker as concentrations increase. Iso-concentration lines were then generated at the following concentrations: 4 ppb, 7.2 ppb, 85 ppb, 150 ppb, 280 ppb, 500 ppb, 1000 ppb, 1900 ppb, 3000 ppb, and 5000 ppb. The 7.2 ppb lines were created because it represents the current EGLE Part 201 generic residential cleanup criterion (GRCC). The 85 ppb lines were created to represent the Consent Judgement 3 (CJ3) drinking water criteria. The 280 ppb lines were created because that is the new EGLE groundwater-surface water interface (GSI) criterion, and 1900 ppb is the Vapor Intrusion criteria. EGLE is contouring the 4 ppb level because that could become a new trigger for response if detected in sentinel wells if the proposed 4th Consent Judgment is approved.To host the plume files on EGLE's ArcGIS Online, MSG prepared the raster file, contour layer, and the input points used as the input for the specified year model in ArcGIS Pro. The points were labeled using three levels of detail. When zoomed out beyond 1:5000 no labels appear at the points because it would be too dense to read and cover the underlying plume. When zoomed in between 1:5000 and 1:1200, the bore name and maximum 1,4-dioxane at that well in 2020 appear. When zoomed in closer than 1:1200, the labels show the boring name, sample depth interval, and maximum 1,4-dioxane at that interval for 2020. The plume layer was set to 7.5% transparency (this can be adjusted later) and shared as a web tile layer using the ArcGIS Online / Bing Maps / Google Maps tiling scheme for levels of detail 12 – 19.This is a previous version of the data. The newest vintage is available at: Gelman Site of 1,4-Dioxane Contamination - Dioxane Plume (2023 Data).This data is used in the Gelman Site of 1,4-Dioxane Contamination web map (item details). If you have questions regarding the Gelman Sciences, Inc site of contamination contact Chris Svoboda at 517-256-2849 or svobodac@michigan.gov. Report problems or data functionality suggestions to EGLE-Maps@Michigan.gov.