Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Layers of geospatial data include contours, boundaries, land cover, hydrography, roads, transportation, geographic names, structures, and other selected map features.
Mature Support Notice: This item is in mature support as of June 2021. A replacement item has not been identified at this time.This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This digital data release presents subsurface data from multiple geologic units that were part of a previous study of the regional subsurface structural configuration of the Powder River Basin in Wyoming and Montana. The original data within this geodatabase is sourced from an unpublished doctoral dissertation by Jessie Melick at Montana State University (Melick, 2013). Data contained in this release were generated from elevation grids developed by Jessie Melick using 28,000 wells and geophysical well logs penetrating Paleozoic to Mesozoic strata over a 70,000 square-kilometer area designated by the Department of Energy as a realistic locality for geologic carbon sequestration (Melick, 2013). Information included in this release represents a small component of the larger geomodel, which includes rock-property details such as facies analysis, porosity calculations, and net to gross thickness, among others. Well locations, well identification numbers, geophysical logs, and any other ...
This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.
This digital dataset release of the La Junta, Colorado and Kansas quadrangle is composed of previously published elevation contours, structure contours on the limits of the Morrison, Dakota, and Purgatorie Formations, and geologic formational data. The digitizing of this map is to provide a more accessible dataset to be available for public usage. The original dataset was part of an eight-part series of maps in Colorado and Kansas, this map modified in part by reconnaissance by G.R. Scott in 1968. The entirety of this dataset includes both spatial and non-spatial data held in a singular, GeMS compliant geodatabase. This geodatabase includes a geologic map, geologic map feature class holding contact and fault lines, iso value lines, structure contours and other geologic lines, geologic map units, and well data; nonspatial data recorded in standalone tables such as a description of map units, glossary, data source reference, geomaterials dictionary, and their entities and attributes. Data source references include web links to published standards, data dictionaries, and any other referenced data within the published map.
USGS Historical Quadrangle in GeoPDF. The USGS Historical Topographic Map Collection (HTMC) is scanning all scales and all editions of topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884.
Under the direction and funding of the National Cooperative Geologic Mapping Program (NCGMP) with guidance and encouragement from the United States Geological Survey (USGS), there has been a decadal strategic plan in place to call for geologic mapping across the nation. This call has been increasing the need for digital data that has not yet been made available. With such a demand, physical data is being re-released as vector-based, GIS operable data, which is viable as a corporate asset to the USGS. This collection of reports is part of the compilation and synthesis efforts hampered by the distributed nature of subsurface investigations at the USGS and a general lack of cataloging and archiving of 3-D geological models and subsurface products. Subsurface mapping activities are decentralized and the results are released on a project-by-project basis. This has led to repeats in data being created, thus wasting both time and energy of the end users. Having a clear understanding of what data is available for GIS use is paramount in the mapping groups. As digital collections of data continue, data releases like this will not be uncommon. This release features structure contour, isopach, and thickness data of stratigraphic units as well as chronostratigraphy. Units included in this release span from North Dakota to as far south as New Mexico and are as follows: San Andres Limestone, Glorieta Sandstone, Leadville Limestone, Cutler Group, Morrison Formation, Colorado Shale, Fox Hills Sandstone, Goose Egg Formation, Minnelusa Formation, Mowry Shale, Pierre Shale, Sundance Formation Unconformity, Wasatch Formation, Permian age units, Trout Creek Sandstone, Castlegate Sandstone, Exshaw or Kinderhook Black Shale, San Juan Volcanics, Lewis Shale, Almond Formation, Baxter Shale, Dakota Sandstone, Cretaceous Onlap, and Tensleep Sandstone.
Version 10.0 of these data are part of a larger U.S. Geological Survey (USGS) project to develop an updated geospatial database of mines, mineral deposits, and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, have been digitized from the 7.5-minute (1:24,000, 1:25,000-scale; and 1:10,000, 1:20,000 and 1:30,000-scale in Puerto Rico only) and the 15-minute (1:48,000 and 1:62,500-scale; 1:63,360-scale in Alaska only) archive of the USGS Historical Topographic Map Collection (HTMC), or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. The compilation of 725,690 point and polygon mine symbols from approximately 106,350 maps across 50 states, the Commonwealth of Puerto Rico (PR) and the District of Columbia (DC) has been completed: Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), Nevada (NV), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York (NY), North Carolina (NC), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South Carolina (SC), South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA), West Virginia (WV), Wisconsin (WI), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the U.S., but an approximate timeline of when these activities occurred. These data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. These data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
The Digital Raster Graphic (DRG) is a raster image of a scanned USGS topographic map including the collar information, georeferenced to the UTM grid. This version of the Digital Raster Graphic (DRG) has been clipped to remove the collar (white border of the map) and has been reprojected to geographic coordinates.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The USGS Elevation Contours service from The National Map displays contours generated for the United States at various scales. Small-scale contours were created by USGS TNM from 1 arc-second data with 100-meter contours, and are visible at 1:600,000 and smaller scales. Medium-scale contours were created by USGS EROS from 1/3-arc-second data with 100-foot intervals, and are visible between 1:150,000 and 1:600,000. Additional medium-scale contours were created by USGS EROS from 1/3-arc-second data with 50-foot intervals, and are visible between 1:50,000 and 1:150,000. Large scale contours are updated every quarter, and are created by USGS TNM for the 7.5' 1:24,000-scale US Topo digital map series. These contours are derived from 1/3 arc-second or better resolution data, and are visible at scales 1:50,000 and larger. Large scale contour intervals are variable across the United States depending on complexity of topography, and as contours are generated per US Topo quadrangle, lines may not match across quad boundaries. The National Map download client allows free downloads of public domain contour data in either Esri File Geodatabase or Shapefile formats. The 3D Elevation Program (3DEP) provides elevation data for The National Map and basic elevation information for earth science studies and mapping applications. Scientists and resource managers use elevation data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. For additional information on 3DEP, go to https://www.usgs.gov/3d-elevation-program. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:Find a location of interest.View the maps.Compare the maps.Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location. Save the maps in an ArcGIS Online web map.
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
This digital data release presents contour data from multiple subsurface geologic horizons as presented in previously published summaries of the regional subsurface configuration of the Michigan and Illinois Basins. The original maps that served as the source of the digital data within this geodatabase are from the Geological Society of America’s Decade of North American Geology project series, “The Geology of North America” volume D-2, chapter 13 “The Michigan Basin” and chapter 14 “Illinois Basin Region”. Contour maps in the original published chapters were generated from geophysical well logs (generally gamma-ray) and adapted from previously published contour maps. The published contour maps illustrated the distribution sedimentary strata within the Illinois and Michigan Basin in the context of the broad 1st order supercycles of L.L. Sloss including the Sauk, Tippecanoe, Kaskaskia, Absaroka, Zuni, and Tejas supersequences. Because these maps represent time-transgressive surfaces, contours frequently delineate the composite of multiple named sedimentary formations at once. Structure contour maps on the top of the Precambrian basement surface in both the Michigan and Illinois basins illustrate the general structural geometry which undergirds the sedimentary cover. Isopach maps of the Sauk 2 and 3, Tippecanoe 1 and 2, Kaskaskia 1 and 2, Absaroka, and Zuni sequences illustrate the broad distribution of sedimentary units in the Michigan Basin, as do isopach maps of the Sauk, Upper Sauk, Tippecanoe 1 and 2, Lower Kaskaskia 1, Upper Kaskaskia 1-Lower Kaskaskia 2, Kaskaskia 2, and Absaroka supersequences in the Illinois Basins. Isopach contours and structure contours were formatted and attributed as GIS data sets for use in digital form as part of U.S. Geological Survey’s ongoing effort to inventory, catalog, and release subsurface geologic data in geospatial form. This effort is part of a broad directive to develop 2D and 3D geologic information at detailed, national, and continental scales. This data approximates, but does not strictly follow the USGS National Cooperative Geologic Mapping Program's GeMS data structure schema for geologic maps. Structure contour lines and isopach contours for each supersequence are stored within separate “IsoValueLine” feature classes. These are distributed within a geographic information system geodatabase and are also saved as shapefiles. Contour data is provided in both feet and meters to maintain consistency with the original publication and for ease of use. Nonspatial tables define the data sources used, define terms used in the dataset, and describe the geologic units referenced herein. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and accompanying nonspatial tables.
The USGS Elevation Contours service from The National Map (TNM) consists of contours generated for the conterminous United States from 1- and 1/3 arc-second elevation data. Small scale contours derived from 1 arc-second data are displayed at scales ranging from 1:577K to 1:72K in The National Map viewer. Contour intervals are 100 foot between 1:577K and 1:144K, and 50 foot at 1:72K. Large scale contours derived from 1/3 arc-second data are displayed at 1:50K (and larger). Large scale contour intervals are variable across the United States depending on complexity of topography. The National Map viewer allows free downloads of public domain contour data in either Esri File Geodatabase or Shapefile formats. The 3D Elevation Program (3DEP) provides elevation data for The National Map and basic elevation information for earth science studies and mapping applications. Scientists and resource managers use elevation data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. For additional information on 3DEP, go to http://nationalmap.gov/3DEP/.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Salt Point map area, California. The vector data file is included in "Contours_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., Krigsman, L.M., Sliter, R.W., Lowe, E.N., and Chin, J.L. (S.Y. Johnson and S.A. Cochran, eds.), 2015, California State Waters Map Series—Offshore of Salt Point, California: U.S. Geological Survey Open-File Report 2015–1098, pamphlet 37 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20151098. 10-m interval contours of the Offshore of SaltPoint map area, California, were generated from bathymetry data collected by California State Universit ...
The Minnesota Geospatial Image Service provides versatile access to the USGS Topographic Map Series layers (DRG format) using a Web Map Service (WMS). Using this service eliminates the need to download and store these background layers locally. Three scales of USGS topographic maps are available through this service: 1:250,000, 1:100,000, and 1:24,000. The maps are 1949-1994 vintage.
For more information:
- How to use a WMS: https://www.mngeo.state.mn.us/chouse/wms/how_to_use_wms.html
- Technical specifications for using this service: https://www.mngeo.state.mn.us/chouse/wms/wms_image_server_specs.html
- About topo maps: https://www.mngeo.state.mn.us/chouse/elevation/topo_maps.html
- USGS services providing access to current topo maps: https://apps.nationalmap.gov/services/
Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.