Facebook
TwitterName of FieldAliasType of DataDescriptionAPNAPNSTRINGAssessor's Parcel NumberHOUSE_NUMHOUSE NUMINTEGERHouse NumberPREFIX_DIRPREFIX DIRSTRINGPrefix DirectionST_NAMESTREET NAMESTRINGStreet NameST_TYPESTREET TYPESTRINGStreet TypeUNITUNITSTRINGUnitFULL_ADDFULL ADDRESSSTRINGFull AddressFULL_STNAFULL STREET NAMESTRINGFull Street NameCITYCITYSTRINGCityZIP_CODEZIP CODESTRINGZip CodeLAND_USELAND USESTRINGLand Use (County)ZONINGZONINGSTRINGZoningSCAG_LUCOSCAG LANDUSE CODESTRINGLand Use (SCAG Code)SCAG_LUSCAG LANDUSESTRINGLand Use (SCAG)FHSZ_CODEFIRE HZ ZONE CODESTRINGFire Hazard Zone CodeFHSZ_DESCFIRE HZ ZONE DESCSTRINGFire Hazard Zone DescriptionFLO_CODEFLOOD CODESTRINGFlood Risk CodeFLO_DESCFLOOD DESCSTRINGFlood Risk DescriptionFAULTZONEFAULT ZONESTRINGFault ZoneLANDSLIDELANDSLIDESTRINGLandslideLIQ_ZONELIQUIFACTION ZONESTRINGLiquifaction ZoneDROUGHTDROUGHTSTRINGDroughtDRO_DESCDROUGHT DESCSTRINGDrought DescriptionSOL_RADSOLAR RADIATIONDOUBLESolar RadiationWIND_SPWIND SPEEDDOUBLEWind SpeedLAND_VALLAND VALUEDOUBLELand ValueBUI_AREABUILT AREADOUBLEBuilt AreaTAXTAXSTRINGTaxOWNERSHIPOWNERSHIPSTRINGOwnershipAREA_ACAREA ACRESDOUBLEAcresAREA_SQFTAREA SQ FTDOUBLESquare Feet
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The East Bay Regional Park District (EBRPD) initiated this project to map the topography, physical and biotic features, and diverse plant communities of the east bay region. This project was funded by the California Department of Forestry and Fire Protection (CAL FIRE), the California State Coastal Conservancy (SCC), and California Department of Fish and Wildlife (CDFW) grants. The mapping study area, consists of approximately 987,000 acres of Alameda and Contra Costa counties. This 115-class fine scale vegetation map was completed in May 2025 and contains 140,442 polygons. The map is based on summer 2020 National Aerial Imagery Program (NAIP) imagery. The map additionally contains lidar-derived information about stand height, canopy cover, and percentage of impervious cover as well as canopy mortality data for each polygon. The minimum mapping unit (MMU) for this project ranges from 1/5 to 1 acre depending on feature type, and is described in detail in the mapping report (Tukman Geospatial, 2025). Development of the Alameda and Contra Costa fine scale vegetation map was managed by EBRPD and staffed by personnel from Tukman Geospatial. Field surveys were completed by trained botanists from the California Native Plant Society (CNPS), who were assisted by botanists from Nomad Ecology Consulting. Data from these surveys, combined with older surveys from previous efforts, were analyzed by the CNPS Vegetation Program, with support from the CDFW Vegetation Classification and Mapping Program (VegCAMP) to develop a county-specific vegetation classification. The floristic classification follows protocols compliant with the Federal Geographic Data Committee (FGDC) and National Vegetation Classification Standards (NVCS). For more information on the field sampling and vegetation classification work, refer to the final report issued by CNPS and corresponding floristic descriptions (Sikes et al., 2025), which are bundled with the vegetation map published for BIOS here: https://filelib.wildlife.ca.gov/Public/BDB/GIS/BIOS/Public_Datasets/3200_3299/ds3206.zipThe foundation for this vegetation map is an enhanced lifeform map produced in 2023 with funding from CAL FIRE. This lifeform map was developed using fine scale segmentation in Trimble® Ecognition® with machine learning and further manual image interpretation. In 2023-2025, Tukman Geospatial and Nomad Ecology staff conducted countywide reconnaissance field work. Field-collected data was used to train automated machine learning algorithms, which produced a semi-automated countywide fine scale vegetation and habitat map. Throughout 2024 and 2025, Tukman Geospatial manually edited the fine scale maps, and Tukman Geospatial and Nomad Ecology went to the field for validation trips to inform and improve the manual editing process. In 2025, input from Alameda and Contra Costa counties’ community of land managers and by the funders of the project was used to further refine the map.Accuracy assessment plot data were collected in 2025. Accuracy assessment results were compiled and analyzed May of 2025. The overall accuracy of the vegetation map by lifeform is 97%. The overall accuracy of the vegetation map by fine scale vegetation map class is 80.8%, with an overall ‘fuzzy’ accuracy of 93.1%.For a complete datasheet of the product, click here. Map class definitions, as well as a dichotomous key for the map classes, can be found in the Alameda and Contra Costa Fine Scale Vegetation Map Key (https://vegmap.press/alcc_mapping_key). A key to map class abbreviations is also available (https://vegmap.press/alcc_vegmap_abbrevs).
Facebook
TwitterVector polygon map data of property parcels from Contra Costa County, California containing 378,332 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
Facebook
TwitterGeospatial data about Contra Costa County, California Parcels. Export to CAD, GIS, PDF, CSV and access via API.
Facebook
TwitterGeospatial data about Contra Costa County, California Streets. Export to CAD, GIS, PDF, CSV and access via API.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The California Association Local Agency Formation Commissions defines a sphere of influence (SOI) as "a planning boundary outside of an agency’s legal boundary (such as the city limit line) that designates the agency’s probable future boundary and service area." This feature set represents the SOIs of the incorporated jurisdictions for the San Francisco Bay Region. The Metropolitan Transportation Commission (MTC) updated the feature set in late 2019 as part of the jurisdiction review process for the BASIS data gathering project. Changes were made to the growth boundaries of the following jurisdictions based on BASIS feedback and associated work: Antioch, Brentwood, Campbell, Daly City, Dublin, Fremont, Hayward, Los Gatos, Monte Sereno, Newark, Oakland, Oakley, Pacifica, Petaluma, Pittsburg, Pleasanton, San Bruno, San Francisco (added to reflect other jurisdictions whose SOI is the same as their jurisdiction boundary), San Jose, San Leandro, Santa Clara, Saratoga, and Sunnyvale. Notes: With the exception of San Mateo and Solano Counties, counties included jurisdiction (city/town) areas as part of their SOI boundary data. San Mateo County and Solano County only provided polygons representing the SOI areas outside the jurisdiction areas. To create a consistent, regional feature set, the Metropolitan Transportation Commission (MTC) added the jurisdiction areas to the original, SOI-only features and dissolved the features by name.Because of differences in base data used by the counties and the MTC, edits were made to the San Mateo County and Solano County SOI features that should have been adjacent to their jurisdiction boundary so the dissolve function would create a minimum number of features. Original sphere of influence boundary acquisitions:Alameda County - CityLimits_SOI.shp received as e-mail attachment from Alameda County Community Development Agency on 30 August 2019 Contra Costa County - BND_LAFCO_Cities_SOI.zip downloaded from https://gis.cccounty.us/Downloads/Planning/ on 15 August 2019Marin County - 'Sphere of Influence - City' feature service data downloaded from Marin GeoHub on 15 August 2019Napa County - city_soi.zip downloaded from their GIS Data Catalog on 15 August 2019 City and County of San Francisco - does not have a sphere of influence San Mateo County - 'Sphere of Influence' feature service data downloaded from San Mateo County GIS open data on 15 August 2019 Santa Clara County - 'City Spheres of Influence' feature service data downloaded from Santa Clara County Planning Office GIS Data on 15 August 2019 Solano County - SphereOfInfluence feature service data downloaded from Solano GeoHub on 15 August 2019 Sonoma County - 'SoCo PRMD GIS Spheres Influence.zip' downloaded from County of Sonoma on 15 August 2019
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Note: The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services beginning in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.This dataset is regularly updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications. PurposeCounty boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This feature layer is for public use. Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal Buffers (this dataset)Without Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal BuffersCity and County AbbreviationsUnincorporated Areas (Coming Soon)Census Designated PlacesCartographic CoastlinePolygonLine source (Coming Soon)State BoundaryWith Bay CutsWithout Bay Cuts Working with Coastal Buffers The dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers. Point of ContactCalifornia Department of Technology, Office of Digital Services, gis@state.ca.gov Field and Abbreviation DefinitionsCDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.CENSUS_GEOID: numeric geographic identifiers from the US Census BureauCENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or countyCENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead. Boundary AccuracyCounty boundaries were originally derived from a 1:24,000 accuracy dataset, with improvements made in some places to boundary alignments based on research into historical records and boundary changes as CDTFA learns of them. City boundary data are derived from pre-GIS tax maps, digitized at BOE and CDTFA, with adjustments made directly in GIS for new annexations, detachments, and corrections.Boundary accuracy within the dataset varies. While CDTFA strives to correctly include or exclude parcels from jurisdictions for accurate tax assessment, this dataset does not guarantee that a parcel is placed in the correct jurisdiction. When a parcel is in the correct jurisdiction, this dataset cannot guarantee accurate placement of boundary lines within or between parcels or rights of way. This dataset also provides no information on parcel boundaries. For exact jurisdictional or parcel boundary locations, please consult the county assessor's office and a licensed surveyor. CDTFA's data is used as the best available source because BOE and CDTFA receive information about changes in jurisdictions which otherwise need to be collected independently by an agency or company to compile into usable map boundaries. CDTFA maintains the best available statewide boundary information. CDTFA's source data notes the following about accuracy: City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties. In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose. SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon. Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these
Facebook
TwitterAt the request of the East Bay Regional Parks District (EBPRD), Nomad Ecology (Nomad), Benson Bio Consulting (Shelly Benson), and Tukman Geospatial (project manager Brittany Burnett) conducted a fine-scale grassland vegetation mapping project on 11,000 acres of grasslands and low-cover shrublands in 16 parks owned and managed by East Bay Regional Parks District (EBRPD) in Alameda and Contra Costa counties. This project used field vegetation sampling and mapping to produce a fine-scale vegetation map (alliance and association level) to identify the composition and location of these native grassland vegetation types, so mapped polygons do not correspond with any imagery base. Areas mapped in the enhanced lifeform map as anything except upland herbaceous or non-native herbaceous were excluded from the matrix. These matrix polygons were incorporated into the final grassland map and flagged "Yes” in the field “Matrix Flag.”. The methods used for this vegetation sampling and mapping project are consistent with the Manual of California Vegetation and followed protocols established by CDFW VegCAMP and CNPS. This map was made in 2023.This fine scale grassland map represents native grasslands and low-cover shrublands throughout select East Bay Regional Parks District (EBRPD) lands – a 74-class grassland map with 2,805 polygons. The mapping was conducted in the spring-summer of 2023 and 2024. The map also includes a non-native matrix covering areas not mapped as native grasslands or low-cover shrublands. After field work concluded, field staff conducted a thorough quality assurance process, which involved checking for polygons under the 1/5-acre minimum mapping unit (MMU), overlapping polygons, and accurate data attribution.Spatial data for this project is also available on pacificvegmap.org. The report for this project is available here: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=228273
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This shapefile contains tax rate area (TRA) boundaries in Contra Costa County for the specified assessment roll year. Boundary alignment is based on the 2020 county parcel map. A tax rate area (TRA) is a geographic area within the jurisdiction of a unique combination of cities, schools, and revenue districts that utilize the regular city or county assessment roll, per Government Code 54900. Each TRA is assigned a six-digit numeric identifier, referred to as a TRA number. TRA = tax rate area number
Facebook
TwitterWARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of March 2025. The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This layer removes the coastal buffer polygons. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal Buffers (this dataset)Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal BuffersCity and County AbbreviationsUnincorporated Areas (Coming Soon)Census Designated PlacesCartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing excludes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.CENSUS_GEOID: numeric geographic identifiers from the US Census BureauCENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or countyCENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.Boundary AccuracyCounty boundaries were originally derived from a 1:24,000 accuracy dataset, with improvements made in some places to boundary alignments based on research into historical records and boundary changes as CDTFA learns of them. City boundary data are derived from pre-GIS tax maps, digitized at BOE and CDTFA, with adjustments made directly in GIS for new annexations, detachments, and corrections. Boundary accuracy within the dataset varies. While CDTFA strives to correctly include or exclude parcels from jurisdictions for accurate tax assessment, this dataset does not guarantee that a parcel is placed in the correct jurisdiction. When a parcel is in the correct jurisdiction, this dataset cannot guarantee accurate placement of boundary lines within or between parcels or rights of way. This dataset also provides no information on parcel boundaries. For exact jurisdictional or parcel boundary locations, please consult the county assessor's office and a licensed surveyor.CDTFA's data is used as the best available source because BOE and CDTFA receive information about changes in jurisdictions which otherwise need to be collected independently by an agency or company to compile into usable map boundaries. CDTFA maintains the best available statewide boundary information.CDTFA's source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and
Facebook
TwitterAbstract:
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
Purpose:
The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.
Facebook
TwitterWARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal Buffers (this dataset)Without Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
Facebook
TwitterThis data release is comprised of geospatial and tabular data developed for the HayWired communities at risk analysis. The HayWired earthquake scenario is a magnitude 7.0 earthquake hypothesized to occur on the Hayward Fault on April 18, 2018, with an epicenter in the city of Oakland, CA. The following 17 counties are included in this analysis unless otherwise specified: Alameda, Contra Costa, Marin, Merced, Monterey, Napa, Sacramento, San Benito, San Francisco, San Joaquin, San Mateo, Santa Clara, Santa Cruz, Solano, Sonoma, Stanislaus, and Yolo. The vector data are a geospatial representation of building damage based on square footage damage estimates by Hazus occupancy class for developed areas covering all census tracts in 17 counties in and around the San Francisco Bay region in California, for (1) earthquake hazards (ground shaking, landslide, and liquefaction) and (2) all hazards (ground shaking, landslide, liquefaction, and fire) resulting from the HayWired earthquake scenario mainshock. The tabular data cover: (1) damage estimates, by Hazus occupancy class, of square footage, building counts, and households affected by the HayWired earthquake scenario mainshock for all census tracts in 17 counties in and around the San Francisco Bay region in California; (2) potential total population residing in block groups in nine counties in the San Francisco Bay region in California (Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma); (3) a subset of select tables for 17 counties in and around the San Francisco Bay region in California from the U.S. Census Bureau American Community Survey 5-year (2012-2016) estimates at the block group level selected to represent potentially vulnerable populations that may, in the event of a major disaster, leave an area rather than stay; and (4) building and contents damage estimates (in thousands of dollars, 2005 vintage), by Hazus occupancy class, for the HayWired earthquake scenario mainshock for 17 counties in and around the San Francisco Bay region in California. The vector .SHP datasets were developed and intended for use in GIS applications such as ESRI's ArcGIS software suite. The tab-delimited .TXT datasets were developed and intended for use in standalone spreadsheet or database applications (such as Microsoft Excel or Access). Please note that some of these data are not optimized for use in GIS applications (such as ESRI's ArcGIS software suite) as-is--census tracts or counties are repeated (the data are not "one-to-one"), so not all information belonging to a tract or county would necessarily be associated with a single record. Separate preparation is needed in a standalone spreadsheet or database application like Microsoft Excel or Microsoft Access before using these data in a GIS. These data support the following publications: Johnson, L.A., Jones, J.L., Wein, A.M., and Peters, J., 2020, Communities at risk analysis of the HayWired scenario, chaps. U1-U5 of Detweiler, S.T., and Wein, A.M., eds., The HayWired earthquake scenario--Societal consequences: U.S. Geological Survey Scientific Investigations Report 2017-5013, https://doi.org/10.3133/sir20175013.
Facebook
TwitterAbstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.
Facebook
TwitterThe 1995 Contra Costa County land use survey data set was developed by DWR through its Division of Planning and Local Assistance (DPLA). The data was gathered using aerial photography and extensive field visits, the land use boundaries and attributes were digitized, and the resultant data went through standard quality control procedures before finalizing. The land uses that were gathered were detailed agricultural land uses, and lesser detailed urban and native vegetation land uses. The data was gathered and digitized by staff of DWR’s Central District. Quality control procedures were performed jointly by staff at DWR’s DPLA headquarters and Central District. The finalized land use vector data is a single, polygon, shapefile format. 1. The land use boundaries were hand drawn directly on USGS quad maps and then digitized. They were drawn to depict observable areas of the same land use. They were not drawn to represent legal parcel (ownership) boundaries, or meant to be used as parcel boundaries. 2. This survey was a "snapshot" in time. The indicated land use attributes of each delineated area (polygon) were based upon what the surveyor saw in the field at that time, and, to an extent possible, whatever additional information the aerial photography might provide. For example, the surveyor might have seen a cropped field in the photograph, and the field visit showed a field of corn, so the field was given a corn attribute. In another field, the photograph might have shown a crop that was golden in color (indicating grain prior to harvest), and the field visit showed newly planted corn. This field would be given an attribute showing a double crop, grain followed by corn. The DWR land use attribute structure allows for up to three crops per delineated area (polygon). In the cases where there were crops grown before the survey took place, the surveyor may or may not have been able to detect them from the field or the photographs. For crops planted after the survey date, the surveyor could not account for these crops. Thus, although the data is very accurate for that point in time, it may not be an accurate determination of what was grown in the fields for the whole year. If the area being surveyed does have double or multicropping systems, it is likely that there are more crops grown than could be surveyed with a "snapshot". 3. If the data is to be brought into a GIS for analysis of cropped (or planted) acreage, two things must be understood: a. The acreage of each field delineated is the gross area of the field. The amount of actual planted and irrigated acreage will always be less than the gross acreage, because of ditches, farm roads, other roads, farmsteads, etc. Thus, a delineated corn field may have a GIS calculated acreage of 40 acres but will have a smaller cropped (or net) acreage, maybe 38 acres. b. Double and multicropping must be taken into account. A delineated field of 40 acres might have been cropped first with grain, then with corn, and coded as such. To estimate actual cropped acres, the two crops are added together (38 acres of grain and 38 acres of corn) which results in a total of 76 acres of net crop (or planted) acres. 4. Not all land use codes will be represented in the survey.
Facebook
TwitterAnnual average daily traffic is the total volume for the year divided by 365 days. The traffic count year is from October 1st through September 30th. Very few locations in California are actually counted continuously. Traffic Counting is generally performed by electronic counting instruments moved from location throughout the State in a program of continuous traffic count sampling. The resulting counts are adjusted to an estimate of annual average daily traffic by compensating for seasonal influence, weekly variation and other variables which may be present. Annual ADT is necessary for presenting a statewide picture of traffic flow, evaluating traffic trends, computing accident rates. planning and designing highways and other purposes.Traffic Census Program Page
Facebook
TwitterThis app features 360-degree imagery courtesy of Hangar Technology. You can click and drag each image to pan around the map.Use the arrows to the right to scroll between all locations. Scroll vertically on mobile to see all locations.Aerial photos were collected as part of a multi agency collaboration. Licensed UAV pilots from Menlo Park Fire District, Alameda County Sheriff, Contra Costa Sheriff, and other agencies assisted the City in capturing the aerial photos. Imagery captured on August 4th and 5th.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterName of FieldAliasType of DataDescriptionAPNAPNSTRINGAssessor's Parcel NumberHOUSE_NUMHOUSE NUMINTEGERHouse NumberPREFIX_DIRPREFIX DIRSTRINGPrefix DirectionST_NAMESTREET NAMESTRINGStreet NameST_TYPESTREET TYPESTRINGStreet TypeUNITUNITSTRINGUnitFULL_ADDFULL ADDRESSSTRINGFull AddressFULL_STNAFULL STREET NAMESTRINGFull Street NameCITYCITYSTRINGCityZIP_CODEZIP CODESTRINGZip CodeLAND_USELAND USESTRINGLand Use (County)ZONINGZONINGSTRINGZoningSCAG_LUCOSCAG LANDUSE CODESTRINGLand Use (SCAG Code)SCAG_LUSCAG LANDUSESTRINGLand Use (SCAG)FHSZ_CODEFIRE HZ ZONE CODESTRINGFire Hazard Zone CodeFHSZ_DESCFIRE HZ ZONE DESCSTRINGFire Hazard Zone DescriptionFLO_CODEFLOOD CODESTRINGFlood Risk CodeFLO_DESCFLOOD DESCSTRINGFlood Risk DescriptionFAULTZONEFAULT ZONESTRINGFault ZoneLANDSLIDELANDSLIDESTRINGLandslideLIQ_ZONELIQUIFACTION ZONESTRINGLiquifaction ZoneDROUGHTDROUGHTSTRINGDroughtDRO_DESCDROUGHT DESCSTRINGDrought DescriptionSOL_RADSOLAR RADIATIONDOUBLESolar RadiationWIND_SPWIND SPEEDDOUBLEWind SpeedLAND_VALLAND VALUEDOUBLELand ValueBUI_AREABUILT AREADOUBLEBuilt AreaTAXTAXSTRINGTaxOWNERSHIPOWNERSHIPSTRINGOwnershipAREA_ACAREA ACRESDOUBLEAcresAREA_SQFTAREA SQ FTDOUBLESquare Feet