28 datasets found
  1. Historical annual precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +6more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  2. Historical snow residence time (CONUS) (Image Service)

    • catalog.data.gov
    • data.amerigeoss.org
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical snow residence time (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-snow-residence-time-conus-image-service-b2f1f
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Snow residence time (in days) and April 1 snow water equivalent (in mm) were modeled using the spatial analog models of Luce et al., 2014 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013WR014844); see also Lute and Luce, 2017 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR020752). These models are built on precipitation and snow data from Snowpack Telemetry (SNOTEL) stations across the western United States and temperature data from the TopoWx dataset (https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.4127). They were calculated for the historical (1975-2005) and future (2071-2090) time periods, along with absolute and percent change.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  3. Future April 1 snow water equivalent (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Future April 1 snow water equivalent (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/future-april-1-snow-water-equivalent-conus-image-service-9564c
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Snow residence time (in days) and April 1 snow water equivalent (in mm) were modeled using the spatial analog models of Luce et al., 2014 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013WR014844); see also Lute and Luce, 2017 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR020752). These models are built on precipitation and snow data from Snowpack Telemetry (SNOTEL) stations across the western United States and temperature data from the TopoWx dataset (https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.4127). They were calculated for the historical (1975-2005) and future (2071-2090) time periods, along with absolute and percent change.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  4. National Weather Service Precipitation Forecast

    • esri-disasterresponse.hub.arcgis.com
    • disasterpartners.org
    • +16more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service Precipitation Forecast [Dataset]. https://esri-disasterresponse.hub.arcgis.com/maps/f9e9283b9c9741d09aad633f68758bf6
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.qpf.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  5. Historical summer temperature (CONUS) (Image Service)

    • catalog.data.gov
    • gimi9.com
    • +6more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical summer temperature (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-summer-temperature-conus-image-service-f99b9
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  6. National Weather Service Snowfall Forecast

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +3more
    Updated Jun 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). National Weather Service Snowfall Forecast [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/be1bb766bf1c44a9be97bbb7c04355ff
    Explore at:
    Dataset updated
    Jun 7, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the expected total accumulation of new snow over the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative snowfall data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the amount by time (incremental) or accumulation by time (cumulative) layers to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.snow.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  7. AgTile-US

    • figshare.com
    zip
    Updated Oct 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasanth Valayamkunnath; Michael Barlage; Fei Chen; David Gochis; Kristie Franz (2020). AgTile-US [Dataset]. http://doi.org/10.6084/m9.figshare.11825742.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 15, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Prasanth Valayamkunnath; Michael Barlage; Fei Chen; David Gochis; Kristie Franz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The 30-m Gridded Tile Drainage Data for the Contiguous United StatesCite this data:Valayamkunnath, P., Barlage, M., Chen, F. et al. Mapping of 30-meter resolution tile-drained croplands using a geospatial modeling approach. Sci Data 7, 257 (2020). https://doi.org/10.1038/s41597-020-00596-xDownload citation

  8. a

    NWS 48 hour Smoke Forecast

    • gis-calema.opendata.arcgis.com
    • wifire-data.sdsc.edu
    • +2more
    Updated Sep 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). NWS 48 hour Smoke Forecast [Dataset]. https://gis-calema.opendata.arcgis.com/datasets/8a84ff77838d46629cd3fa4fc5bb9ff8
    Explore at:
    Dataset updated
    Sep 23, 2020
    Dataset authored and provided by
    CA Governor's Office of Emergency Services
    Area covered
    Description

    This feature service displays projected visible smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where the data is coming from The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binWhere can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.

  9. d

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/1-meter-digital-elevation-models-dems-usgs-national-map-3dep-downloadable-data-collection
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.

  10. National Weather Service Wind Forecast

    • esri-disasterresponse.hub.arcgis.com
    • geodata.colorado.gov
    • +5more
    Updated Jun 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). National Weather Service Wind Forecast [Dataset]. https://esri-disasterresponse.hub.arcgis.com/maps/33820e818ebc4661b01bcd47e5f2a57e
    Explore at:
    Dataset updated
    Jun 7, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the wind forecast over the next 72 hours across the contiguous United States, in 3 hour increments, including wind direction, wind gust, and sustained wind speed.Zoom in on the Map to refine the detail for a desired area. The Wind Gust is the maximum 3-second wind speed (in mph) forecast to occur within a 2-minute interval within a 3 hour period at a height of 10 meters Above Ground Level (AGL). The Wind Speed is the expected sustained wind speed (in mph) for the indicated 3 hour period at a height of 10 meters AGL. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Wind Speed Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wspd.binWind Gust Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wgust.binWind Direction Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wdir.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.Alternate SymbologyFeature Layer item that uses Vector Marker Symbols to render point arrows, easily altered by user. The color palette uses the Beaufort Scale for Wind Speed. https://www.arcgis.com/home/item.html?id=45cd2d4f5b9a4f299182c518ffa15977 This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  11. National Weather Service Ice Accumulation Forecast

    • geospatial-nws-noaa.opendata.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +6more
    Updated Jun 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). National Weather Service Ice Accumulation Forecast [Dataset]. https://geospatial-nws-noaa.opendata.arcgis.com/maps/esri2::national-weather-service-ice-accumulation-forecast
    Explore at:
    Dataset updated
    Jun 7, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the predicted ice accumulation for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database (NDFD) produced by the National Weather Service. The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.iceaccum.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  12. National Weather Service Smoke Forecast

    • data-napsg.opendata.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +13more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service Smoke Forecast [Dataset]. https://data-napsg.opendata.arcgis.com/maps/a98fd08751a5480c898b7cebe38807f4
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays projected visible surface smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where is the data coming from?The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binSource data archive can be found here: https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database look for 'LXQ...' files by date. These are the Binary GRIB2 files that can be decoded via DeGRIB tool.Where can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.RevisionsJuly 11, 2022: Feed updated to leverage forecast model change by NOAA, whereby the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) forecast model system was replaced with the Rapid Refresh (RAP) forecast model system. Key differences: higher accuracy with RAP now concentrated at 0-8 meter detail vs HYSPLIT at 0-100 meter; earlier data delivery by 6 hrs; forecast output extended to 51 hrs.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  13. u

    Landscape Change Monitoring System (LCMS) CONUS Change Attribution (Image...

    • agdatacommons.nal.usda.gov
    • datasets.ai
    bin
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Landscape Change Monitoring System (LCMS) CONUS Change Attribution (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Change_Attribution_Image_Service_/25973089
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled land use classes for each year. See additional information about land use in the Entity_and_Attribute_Information section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.References:Breiman, L. (2001). Machine Learning (Vol. 45, Issue 3, pp. 261-277). https://doi.org/10.1023/a:1017934522171 Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012 Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010 Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031 Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoServiceFor complete information, please visit https://data.gov.

  14. e

    National Weather Service Wind Speed Forecast

    • atlas.eia.gov
    • prep-response-portal.napsgfoundation.org
    • +10more
    Updated Jun 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). National Weather Service Wind Speed Forecast [Dataset]. https://atlas.eia.gov/maps/47ed83c3b4f943118e848fbfc33d119e
    Explore at:
    Dataset updated
    Jun 7, 2019
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This map displays the forecasted wind speeds over the next 72 hours across the contiguous United States. Wind Speed is the expected 10-meter Above Ground Level (AGL) sustained wind speed (in knots) for the indicated hour. Wind speed forecasts are valid at the top of the indicated hour. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wspd.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  15. Rapid Assessment of Vegetation Condition after Wildfire (RAVG) Basal Area...

    • agdatacommons.nal.usda.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +5more
    bin
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Rapid Assessment of Vegetation Condition after Wildfire (RAVG) Basal Area Percent Change (Alaska) (Map Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Rapid_Assessment_of_Vegetation_Condition_after_Wildfire_RAVG_Basal_Area_Percent_Change_Alaska_Map_Service_/25972294
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 23, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The USDA Forest Service Rapid Assessment of Vegetation Condition after Wildfire (RAVG) program produces geospatial data and maps of post-fire vegetation condition using standardized change detection methods based on Landsat or similar multispectral satellite imagery. RAVG data products characterize vegetation condition within a fire perimeter, and include estimates of percent change in basal area (BA), percent change in canopy cover (CC), and a standardized composite burn index (CBI). Standard thematic products include 7-class percent change in basal area (BA-7), 5-class percent change in canopy cover (CC-5), and 4-class CBI (CBI-4). Contingent upon the availability of suitable imagery, RAVG products are prepared for all wildland fires reported within the conterminous United States (CONUS) that include at least 1000 acres of forested National Forest System (NFS) land (500 acres for Regions 8 and 9 as of 2016). Data for individual fires are typically made available within 45 days after fire containment ("initial assessments"). Late-season fires, however, may be deferred until the following spring or summer ("extended assessments"). National mosaics of each thematic product are prepared annually. Mosaics of extended assessments, if any, are provided separately from initial assessment mosaics. This map service includes annual raster mosaics of published BA-7 datasets for fires that burned during calendar years 2019 in Alaska. The associated burned area perimeters are available via the Enterprise Data Warehouse.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  16. a

    Historical summer precipitation (CONUS) (Image Service)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • agdatacommons.nal.usda.gov
    • +8more
    Updated Mar 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Historical summer precipitation (CONUS) (Image Service) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/usfs::historical-summer-precipitation-conus-image-service
    Explore at:
    Dataset updated
    Mar 5, 2019
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  17. c

    Monitoring Trends in Burn Severity Fire Occurrence Locations (Feature Layer)...

    • s.cnmilf.com
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Monitoring Trends in Burn Severity Fire Occurrence Locations (Feature Layer) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/monitoring-trends-in-burn-severity-fire-occurrence-locations-feature-layer-6f9d7
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Forest Service
    Description

    The Monitoring Trends in Burn Severity MTBS project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico from the beginning of the Landsat Thematic Mapper archive to the present. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a vector point of the _location of all currently inventoried and mappable fires occurring between calendar year 1984 and the current MTBS release for CONUS, Alaska, Hawaii and Puerto Rico. Please visit https://mtbs.gov/announcements to determine the current release. Fires omitted from this mapped inventory are those where suitable satellite imagery was not available or fires were not discernable from available imagery. The point _location represents the geographic centroid for the _BURN_AREA_BOUNDARY polygon(s) associated with each fire. Metadata

  18. g

    Verification Geodatabase of Irrigation Status of Agricultural Lands in...

    • gimi9.com
    Updated Mar 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Verification Geodatabase of Irrigation Status of Agricultural Lands in Select Areas of Montana, 2019 and 2020 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_verification-geodatabase-of-irrigation-status-of-agricultural-lands-in-select-areas-of-mon
    Explore at:
    Dataset updated
    Mar 21, 2023
    Description

    In 2015, agricultural irrigation withdrawals accounted for about 42 percent of the total freshwater withdrawals in the United States (Dieter and others, 2018). Consistent and accurate designations of irrigated agricultural lands, irrigation system type, conveyance systems, and water source (groundwater or surface water) are essential for the determination of irrigation water use and ultimately the sound management of our nation’s water resources. Several local, state, and federal agencies compile data (crops, irrigation, irrigation system type, etc.) that can be used to estimate irrigation withdrawals for agricultural. The format of these data varies from data tables, typically compiled at the county level, to spatial Geographic Information System (GIS) polygon layers of agricultural lands. These data sources are often incomplete, out of date, or inconsistently compiled. The USGS and the University of Wisconsin-Madison developed annual Landsat-based Irrigation Dataset (LANID), which consists of irrigation maps, derivative products, and manually collected ground reference data covering the conterminous US (CONUS) for the period of 1997–2017 (Xie and Lark, 2021a). These maps were developed using verified irrigated-lands GIS datasets (i.e. training data) coupled with remotely-sensed, 30-meter resolution Landsat-derived data. The current and future availability of verified field-level data is required to train and validate this and other models.

  19. Data_Analysis_Crop_Yield_N_Loss_FMS

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2025). Data_Analysis_Crop_Yield_N_Loss_FMS [Dataset]. https://catalog.data.gov/dataset/data-analysis-crop-yield-n-loss-fms
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    the dataset includes: 1. EPIC_outputs are EPIC yearly output files from Rainfed/Irrigated corn grain simulations using 2006/2011 fertilizer management scenario for the simulation periods of 2002 to 2009 and 2010 to 2017 (e.g. CornGrainIrrig-2006FMS_yrs2002-09.csv: yearly output from 2002 to 2009 for Irrigated Corn grain using 2006 fertilizer management scenario; CornGrainRainfed-2011FMS_yrs2010-2017.csv: yearly output from 2010 to 2017 for Rainfed Corn grain using 2011 fertilizer management scenario); 2. \EPIC_outputsAggregated are saved average annual EPIC output aggregated over entire CONUS or GRIDCELL used for GIS maps including Figures 4, 5 and 9 (e.g. CONUS_2006FMS_AvgOf2003-2009.csv: average annual EPIC output using 2006 fertilizer management scenario for period from 2003 to 2009 and aggregated over CONUS CONUS_GRIDCELL_2006FMS_AvgOf2003-2009.csv: average annual EPIC output using 2006 fertilizer management scenario for period from 2003 to 2009 and aggregated over each CONUS GRIDCELL); 3.\SummaryData_FromEPIC_for_Tables_Figs are saved summarized data for all the tables and Figs in Excel sheets. This dataset is associated with the following publication: Wang, X., Y. Yuan, V. Benson, and L. Ran. An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments. Agriculture. MDPI, Basel, SWITZERLAND, 15(10): 1017, (2025).

  20. a

    Historical winter precipitation (CONUS) (Image Service)

    • hub.arcgis.com
    • datasets.ai
    • +6more
    Updated Nov 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2017). Historical winter precipitation (CONUS) (Image Service) [Dataset]. https://hub.arcgis.com/datasets/4f179a9127e441088efac2930fe4a2fb
    Explore at:
    Dataset updated
    Nov 22, 2017
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2025). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
Organization logo

Historical annual precipitation (CONUS) (Image Service)

Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
Description

The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

Search
Clear search
Close search
Google apps
Main menu