This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.
The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:
(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.
(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.
(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.
Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.
More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.
Data processing
We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.
Version
Version 2022.1.
Acknowledgements
This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.
Citation
Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision
Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940
Contacts
Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;
Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn
Institution: Kunming Institute of Botany, Chinese Academy of Sciences
Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China
Copyright
This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
This dataset shows the tiling grid and their IDs for Sentinel 2 satellite imagery. The tiling grid IDs are useful for selecting imagery of an area of interest. Sentinel 2 is an Earth observation satellite developed and operated by the European Space Agency (ESA). Its imagery has 13 bands in the visible, near infrared and short wave infrared part of the spectrum. It has a spatial resolution of 10 m, 20 m and 60 m depending on the spectral band. Sentinel-2 has a 290 km field of view when capturing its imagery. This imagery is then projected on to a UTM grid and made available publicly on 100x100 km2 tiles. Each tile has a unique ID. This ID scheme allows all imagery for a given tile to be located. Provenance: The ESA make the tiling grid available as a KML file (see links). We were, however, unable to convert this KML into a shapefile for deployment on the eAtlas. The shapefile used for this layer was sourced from the Git repository developed by Justin Meyers (https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index). Why is this dataset in the eAtlas?: Sentinel 2 imagery is very useful for the studying and mapping of reef systems. Selecting imagery for study often requires knowing what the tile grid IDs are for the area of interest. This dataset is intended as a reference layer. The eAtlas is not a custodian of this dataset and copies of the data should be obtained from the original sources. Data Dictionary: Name: UTM code associated with each tile. For example 55KDV
The geopusher extension for CKAN automatically converts KML and Shapefile resources uploaded to a CKAN instance into GeoJSON resources. This conversion process allows users to easily access and utilize geospatial data in a modern, web-friendly format without needing to manually reformat the files. The extension operates as a celery task, meaning it can be configured to run automatically when resources are added or updated within CKAN. Key Features: Automatic GeoJSON Conversion: Converts KML and Shapefile resource uploads into GeoJSON format, increasing data usability and accessibility. Celery Task Integration: Operates as a Celery task, enabling asynchronous and automatic conversion upon resource creation or update and allowing other asynchronous operations to be processed at defined times. Batch Conversion: Provides functionality to convert all Shapefile resources on a CKAN instance or a specific subset of datasets at once. Technical Integration: The geopusher extension integrates with CKAN by listening to resource update events. The celery daemon needs to be running for automatic conversion to occur. The extension requires GDAL to be installed on the server to handle the geospatial data conversion. The README shows that the installation and usage involve updating the CKAN configuration Benefits & Impact: By automatically converting geospatial data into GeoJSON, the geopusher extension simplifies the use of KML and Shapefile data within web applications. This automation reduces manual effort, increases accessibility, and helps users to more readily integrate CKAN data into mapping and analysis tools. The automatic conversion ensures that when geospatial data is uploaded to a CKAN repository, users are able to immediately access the data in a suitable format for a wide range of web-based mapping applications, supporting improved data dissemination and collaboration.
117 original plate boundaries from Esri Data and Maps (2007) edited to better match 10 years of earthquakes, land forms and bathymetry from Mapping Our World's WSI_Earth image from module 2. Esri Canada's education layer of plate boundaries and the Smithsonian's ascii file from the download section of the 'This Dynamic Planet' site plate boundaries were used to compare the resulting final plate boundaries for significant differences.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
The Unpublished Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (viis_geology.gdb), a 10.1 ArcMap (.mxd) map document (viis_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (viis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (viis_geology_gis_readme.pdf). Please read the viis_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (viis_geology_metadata.txt or viis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 20N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Virgin Islands National Park.
Vector polygon map data of city limits from cities across the State of Oregon containing 241 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Vector polygon map data of city limits from across the State of Texas containing 2142 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information of well locations, water quality (arsenic, iron contamination...), drilling, digging and lithology. The well map database is an initiative of the Ministry of Rural Development of Cambodia, piloted with financial support from the Water and Sanitation Program of the World Bank, and published online in March 2010. The historical data of water quality, well and arsenic database were also contributed by the following organizations and projects including: Tonle Sap Rural Water Supply and Sanitation Project funded by ADB, Resources Development International (RDI), UNICEF and World Vision International. This dataset is also available for downloading on Cambodia WellMap website in Microsoft Access format. ODC's map and data team has collected and converted it into shapefile, kml and geojson formats, then re-published on ODC's website.
Overview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (GIS data, Geospatial data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the GIS data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Polygon vector map data covering boundaries for the City of Los Angeles containing 4 features.
Boundary GIS (Geographic Information System) data is spatial information that delineates the geographic boundaries of specific geographic features. This data typically includes polygons representing the outlines of these features, along with attributes such as names, codes, and other relevant information.
Boundary GIS data is used for a variety of purposes across multiple industries, including urban planning, environmental management, public health, transportation, and business analysis.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Vector polygon map data of city limits from cities across the State of Idaho containing 201 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
The Unpublished Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (nava_geology.gdb), a 10.1 ArcMap (.mxd) map document (nava_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (nava_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (nava_geology_gis_readme.pdf). Please read the nava_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nava_geology_metadata.txt or nava_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Navajo National Monument.
Vector polygon map data of property parcels from Harris County, Texas containing 1,410,276 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
USA Railroads is a comprehensive database of the nation's railway system at 1:24,000 to 1:100,000 scale. The data set covers all 50 States plus the District of Columbia.This hosted feature service displays at scales up to 1:1,500,000.
The Unpublished Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (wcam_geology.gdb), a 10.1 ArcMap (.mxd) map document (wcam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (wica_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (wica_geology_gis_readme.pdf). Please read the wica_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wcam_geology_metadata.txt or wcam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Wind Cave National Park.
For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.Abstract:The FP_GIS_FPA_ shapefiles represents Forest Practices Application/Notification (FPA/N) harvest unit boundaries, FPA/N specific tabular data, FPA/N specific Office Checklist tabular data and FPA/N specific stakeholder tabular data. An FPA/N may include harvest activity, forest road activity and aerial chemical spray activity. FPA/N harvest units include timber harvest and salvage sites. FPA/N harvest unit polygons are captured from FPA/N Activity Maps. Attribute data is captured from the FPA/N and associated documents, and may be compiled from many sources.Supplemental_Information: From July 1996 through October 2002, FPSPOLY data was collected in Oracle using the Mapping and Planning System (MAPS). From October 28, 2002 to July 10, 2009, data was collected in Oracle using the Forest Practices Application Review System (FPARS). From July 13, 2009, to the present data is collected in dotNET using FPARSv3.Washington State is divided into two State Plane Zones, north and south. For this data set, north zone data coordinates have been converted to south zone coordinates.
Vector polygon map data of property parcels from Washoe County, Nevada containing 209,859 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.