40 datasets found
  1. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhu, Guang-Fu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zhu, Guang-Fu
    Liu, Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  2. d

    Country Polygons as GeoJSON

    • datahub.io
    Updated Sep 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Country Polygons as GeoJSON [Dataset]. https://datahub.io/core/geo-countries
    Explore at:
    Dataset updated
    Sep 1, 2017
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    geodata data package providing geojson polygons for all the world's countries

  3. c

    ckanext-geopusher - Extensions - CKAN Ecosystem Catalog Beta

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-geopusher - Extensions - CKAN Ecosystem Catalog Beta [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-geopusher
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The geopusher extension for CKAN automatically converts KML and Shapefile resources uploaded to a CKAN instance into GeoJSON resources. This conversion process allows users to easily access and utilize geospatial data in a modern, web-friendly format without needing to manually reformat the files. The extension operates as a celery task, meaning it can be configured to run automatically when resources are added or updated within CKAN. Key Features: Automatic GeoJSON Conversion: Converts KML and Shapefile resource uploads into GeoJSON format, increasing data usability and accessibility. Celery Task Integration: Operates as a Celery task, enabling asynchronous and automatic conversion upon resource creation or update and allowing other asynchronous operations to be processed at defined times. Batch Conversion: Provides functionality to convert all Shapefile resources on a CKAN instance or a specific subset of datasets at once. Technical Integration: The geopusher extension integrates with CKAN by listening to resource update events. The celery daemon needs to be running for automatic conversion to occur. The extension requires GDAL to be installed on the server to handle the geospatial data conversion. The README shows that the installation and usage involve updating the CKAN configuration Benefits & Impact: By automatically converting geospatial data into GeoJSON, the geopusher extension simplifies the use of KML and Shapefile data within web applications. This automation reduces manual effort, increases accessibility, and helps users to more readily integrate CKAN data into mapping and analysis tools. The automatic conversion ensures that when geospatial data is uploaded to a CKAN repository, users are able to immediately access the data in a suitable format for a wide range of web-based mapping applications, supporting improved data dissemination and collaboration.

  4. California building footprints

    • zenodo.org
    • datadryad.org
    zip
    Updated Jun 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vu Dao; Vu Dao (2022). California building footprints [Dataset]. http://doi.org/10.7280/d16387
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 3, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Vu Dao; Vu Dao
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data set is a conversion of Califonia building footprint file from GeoJSON format to shapefile format. The California building footprint file which contains 10,988,525 computer generated building footprints in California state is extracting from US building footprint dataset by Microsoft (2018).

  5. a

    Fuquay-Varina Utilities - Water System - Fire Department Connection (FDC)

    • hub.arcgis.com
    • data-wake.opendata.arcgis.com
    Updated Mar 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Water System - Fire Department Connection (FDC) [Dataset]. https://hub.arcgis.com/maps/tofv::fuquay-varina-utilities-water-system-fire-department-connection-fdc
    Explore at:
    Dataset updated
    Mar 11, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Fire Department Connections (FDC's) points within Fuquay-Varina. These are primarily privately owned and maintained. Mapping of FDC's primarily began from 2015 and later from as-built information provided by new developments, so this should be considered a very limited dataset. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  6. C

    Noise load maps Schiedam

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Noise load maps Schiedam [Dataset]. https://ckan.mobidatalab.eu/dataset/geluidsbelastingskaarten-schiedam
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/pdf, http://publications.europa.eu/resource/authority/file-type/txt, http://publications.europa.eu/resource/authority/file-type/zip, http://publications.europa.eu/resource/authority/file-type/jsonAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Schiedam
    Description
    • Description: The determined noise load maps of Schiedam. * Basis: Article 11.6 of the Environmental Management Act. * Aim: To provide insight into the noise exposure (day and night value) as a result of roads, railways, industry and aviation. * Restrictions: None, the data is public. * Possibilities: - There are 10 files with visualizations (2 per subject; Lden/Lnight of 24 hours/night): road traffic noise, rail traffic noise , industrial noise pollution, aviation noise pollution and the cumulative noise pollution. - There is a ZIP archive with a shapefile containing the data from these visualizations. This is the official source. In the archive also a file with SHA checksums. - There is a (Geo)JSON file from a conversion of the shapefile. - There are two additional visualizations for Vessel traffic. The data for this is not in the shapefile and is not part of the established set. The shapefile and the GeoJSON file use the following naming conventions for the attributes: RL = rail traffic noise, LL = aviation noise, IL = industrial noise, VL = road traffic noise, CUM = cumulative, DN = 24 hours, NT = night
  7. G

    Hydroclimatic atlas 2022

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    csv, geojson, html +3
    Updated May 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Hydroclimatic atlas 2022 [Dataset]. https://open.canada.ca/data/dataset/8bc217ff-d25d-4f55-a9a7-ada3df4b29a7
    Explore at:
    csv, geojson, pdf, zip, html, shpAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1970 - Dec 31, 2100
    Description

    #Données of the 2022 Hydroclimatic Atlas ## #Description The Hydroclimatic Atlas describes the current and future water regime of southern Quebec in order to support the implementation of water management practices that are resilient to climate change. These data are from the most recent version of the Hydroclimatic Atlas. ## #Nouveautés * Improvement of the spatial resolution of the hydrographic network; * Greater spatial coverage; * Addition of the CliMEX and CORDEX-NA sets, in addition to the scenarios in the CMIP5 set; * Use of six hydrological platforms; * * Addition of indicators, especially annual ones. * Etc. ## #Liste data available * Link to the new Hydroclimatic Atlas website. * Map of the 24,604 river sections of the Hydroclimatic Atlas with their attributes, available in GeoJSON and shapefile format. To facilitate download and display, the map is divided into 11 GeoJSON files: ABIT (Abitibi and Lac Abitibi region), CND west (North Shore A and B regions), CND east (North Shore regions C, D and E), GASP (North Shore regions C, D and E), GASP (Gaspésie), MONT (Gaspesie), MONT (Montégérie), OUTM (Outaouais Upstream), OUTV (Outaouais Downstream), OUTV (Outaouais Downstream), SAGU (Saguenay), SLNO (St-Laurent Nord-Ouest), SLSO (St-Laurent Sud-Ouest), and VAUD (Vaudreuil). * The CSV tables (“Magnitude...”) for each of the 76 hydrological indicators describing the amplement, the direction and the dispersion for RCP 4.5 and RCP8.5, for the three future horizons (see the documentation for details). * The CSV tables (“Projected indicator...”) for each of the 76 hydrological indicators detailing the flow values with their uncertainty for the historical period and the three future horizons (RCP4.5 and 8.5). See the documentation for more details. * A PDF with the metadata and a more detailed description of the data. ## #Note The 2018 version data is archived on Data Quebec for reference, for example for old reports or analyses referring to this version of the data. Any new study or analysis should use the most recent data available below or on the Atlas website.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  8. d

    Extract Domain Boundaries from Geographical Features and Transform into...

    • search.dataone.org
    • hydroshare.org
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Anthony M. Castronova (2024). Extract Domain Boundaries from Geographical Features and Transform into Specified Projection Systems Using Python [Dataset]. https://search.dataone.org/view/sha256%3Ad8ee35a4372eec7eabed103cfd8ace29b7cc908013c5d79ec81c4ba4bdf94a82
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    Hydroshare
    Authors
    Irene Garousi-Nejad; Anthony M. Castronova
    Area covered
    Description

    This resource provides a Jupyter notebook demonstrating how to use GeoPandas and Shapely in Python to extract bounding box information from a shapefile or GeoJSON file. It ensures that the returned values are in a specified projection system, regardless of whether the original file uses a geographic or projected coordinate system. Users can adjust the parameters in the notebook to fit their specific use case. In this example, the parameters are based on the Kings River Watershed in California, with the target projection system being Lambert Conformal Conic, as used in National Water Model versions 1-3.

  9. c

    ckanext-iotrans - Extensions - CKAN Ecosystem Catalog Beta

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-iotrans - Extensions - CKAN Ecosystem Catalog Beta [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-iotrans
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The iotrans extension enhances CKAN's capabilities by allowing users to convert datastore resources into various file formats and, for spatial data, transform them between Coordinate Reference Systems (EPSG). This extension addresses the need to download datastore resources in multiple formats and projections beyond CKAN's built-in options, leveraging Python libraries for data conversion. It provides CKAN actions to facilitate file format conversion and data transformation, primarily intended for administrative users. Key Features: Datastore Resource Conversion: Converts CKAN datastore resources to various formats, including CSV, GeoJSON, GPKG, SHP, JSON, and XML. Coordinate Reference System Transformation: Transforms spatial data between different EPSG codes, enabling data compatibility across various GIS applications. Admin-Only Actions: Introduces two CKAN actions, to_file and prune, accessible only to administrator users for file conversion and temporary file cleanup. Disk-Based Processing: Streams data from the CKAN datastore to a temporary CSV file, reducing memory consumption during format conversion. Spatial Data Handling: Identifies spatial data based on the presence of a "geometry" attribute and converts non-Multi geometry types to their Multi counterparts (e.g., Point to MultiPoint) to ensure consistent geometry types within output files. Shapefile Support: Handles shapefile-specific limitations by truncating column names longer than 10 characters, creating unique column names, and documenting the original-to-truncated name mapping in a zipped text file within the shapefile. Temporary File Management: Uses the /tmp directory as a staging area for file conversions, with a prune action to remove files or directories within this location. Technical Integration: The iotrans extension functions by adding new API actions to CKAN (to_file and prune). These actions interact directly with the CKAN datastore extension, retrieving data in chunks via sequential calls to CKAN's datastore_search API, converting it to different formats, and storing these in the /tmp directory. It requires the CKAN Datastore extension to be active. Benefits & Impact: The iotrans extension streamlines the process of extracting and transforming data from the CKAN datastore, enabling users to easily access data in preferred formats and coordinate reference systems. This enhances data usability and interoperability, making it easier to integrate CKAN data into other applications and workflows. It is especially useful for organizations that need to provide data in various formats to meet diverse user needs.

  10. w

    Fuquay-Varina Utilities - Stormwater System - Stormwater Lines

    • data.wake.gov
    • data-wake.opendata.arcgis.com
    • +2more
    Updated Mar 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Stormwater System - Stormwater Lines [Dataset]. https://data.wake.gov/items/2e9af1ba23fb4ce1bfe22b102a8eb678
    Explore at:
    Dataset updated
    Mar 23, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Stormwater Pipe/Conveyance Lines in Fuquay-Varina. Please note that many of the stormwater line features represent privately owned and maintained pipes, and these are essential for mapping and understanding the stormwater drainage network sub-systems at the neighborhood level. Please pay attention to the Subtype field to identify the different categories of public vs. private and culvert type stormwater lines. Directionality (start vs. end vertices) of these line features reflects real world flow direction. The GIS data in the area of Downtown Fuquay-Varina has a lot of old and erroneous stormwater features. A project is currently underway to correct much of this inaccurate stormwater data. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersWater Meter VaultsRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  11. O

    Equity Report Data: Geography

    • data.sandiegocounty.gov
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Various (2025). Equity Report Data: Geography [Dataset]. https://data.sandiegocounty.gov/dataset/Equity-Report-Data-Geography/p6uw-qxpv
    Explore at:
    application/geo+json, csv, kmz, kml, xlsx, xmlAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Various
    Description

    This dataset contains the geographic data used to create maps for the San Diego County Regional Equity Indicators Report led by the Office of Equity and Racial Justice (OERJ). The full report can be found here: https://data.sandiegocounty.gov/stories/s/7its-kgpt

    Demographic data from the report can be found here: https://data.sandiegocounty.gov/dataset/Equity-Report-Data-Demographics/q9ix-kfws

    Filter by the Indicator column to select data for a particular indicator map.

    Export notes: Dataset may not automatically open correctly in Excel due to geospatial data. To export the data for geospatial analysis, select Shapefile or GEOJSON as the file type. To view the data in Excel, export as a CSV but do not open the file. Then, open a blank Excel workbook, go to the Data tab, select “From Text/CSV,” and follow the prompts to import the CSV file into Excel. Alternatively, use the exploration options in "View Data" to hide the geographic column prior to exporting the data.

    USER NOTES: 4/7/2025 - The maps and data have been removed for the Health Professional Shortage Areas indicator due to inconsistencies with the data source leading to some missing health professional shortage areas. We are working to fix this issue, including exploring possible alternative data sources.

    5/21/2025 - The following changes were made to the 2023 report data (Equity Report Year = 2023). Self-Sufficiency Wage - a typo in the indicator name was fixed (changed sufficienct to sufficient) and the percent for one PUMA corrected from 56.9 to 59.9 (PUMA = San Diego County (Northwest)--Oceanside City & Camp Pendleton). Notes were made consistent for all rows where geography = ZCTA. A note was added to all rows where geography = PUMA. Voter registration - label "92054, 92051" was renamed to be in numerical order and is now "92051, 92054". Removed data from the percentile column because the categories are not true percentiles. Employment - Data was corrected to show the percent of the labor force that are employed (ages 16 and older). Previously, the data was the percent of the population 16 years and older that are in the labor force. 3- and 4-Year-Olds Enrolled in School - percents are now rounded to one decimal place. Poverty - the last two categories/percentiles changed because the 80th percentile cutoff was corrected by 0.01 and one ZCTA was reassigned to a different percentile as a result. Low Birthweight - the 33th percentile label was corrected to be written as the 33rd percentile. Life Expectancy - Corrected the category and percentile assignment for SRA CENTRAL SAN DIEGO. Parks and Community Spaces - corrected the category assignment for six SRAs.

    5/21/2025 - Data was uploaded for Equity Report Year 2025. The following changes were made relative to the 2023 report year. Adverse Childhood Experiences - added geographic data for 2025 report. No calculation of bins nor corresponding percentiles due to small number of geographic areas. Low Birthweight - no calculation of bins nor corresponding percentiles due to small number of geographic areas.

    Prepared by: Office of Evaluation, Performance, and Analytics and the Office of Equity and Racial Justice, County of San Diego, in collaboration with the San Diego Regional Policy & Innovation Center (https://www.sdrpic.org).

  12. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Germany, United States, United Kingdom
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  13. w

    Fuquay-Varina Utilities - Water System - Water Meters

    • data.wake.gov
    • hub.arcgis.com
    • +1more
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Water System - Water Meters [Dataset]. https://data.wake.gov/datasets/tofv::fuquay-varina-utilities-water-system-water-meters/about
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Water Meter points within Fuquay-Varina. Most meter devices are owned and maintained by the Town, which provides water utility services. However, on some commercial sites, for example, the meter box and meter yoke are actually privately owned and maintained while the meter device is owned and maintained by the Town. This water meter dataset is constantly under development and improvement as there is increasing demand to integrate GIS meter information with other solutions. Please note that some meter points are not field-validated and some are not associated with a valid METERID for water service, and may essentially be duplicated legacy locations from old GIS data. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  14. w

    Fuquay-Varina Utilities - Water System - Water Valves

    • data.wake.gov
    • data-tofv.opendata.arcgis.com
    • +2more
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Water System - Water Valves [Dataset]. https://data.wake.gov/datasets/tofv::fuquay-varina-utilities-water-system-water-valves
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Water Valves within Fuquay-Varina. Please note that some of these valves are privately owned and maintained. Pay attention to the WValve_Subtype field and OWNEDBY fields. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  15. w

    Fuquay-Varina Utilities - Water System - RPZ

    • data.wake.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Water System - RPZ [Dataset]. https://data.wake.gov/datasets/200b91f3096243dd85356e2a7db560ea
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    RPZ (Reduced Pressure Zone assembly) points a.k.a. Backflow Preventers within Fuquay-Varina. This dataset is limited in scope, and mostly includes features from developments newer than 2015. RPZ's are usually privately owned and maintained.Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  16. w

    Fuquay-Varina Utilities - Stormwater System - Stormwater Points

    • data.wake.gov
    • data-tofv.opendata.arcgis.com
    • +4more
    Updated Mar 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Stormwater System - Stormwater Points [Dataset]. https://data.wake.gov/datasets/tofv::fuquay-varina-utilities-stormwater-system-stormwater-points
    Explore at:
    Dataset updated
    Mar 23, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Stormwater collection/conveyance point features in Fuquay-Varina (e.g. inlets and outlets, and stormwater manholes/junction boxes). Please note that many of the stormwater point features represent privately owned and maintained stormwater features, and these are essential for mapping and understanding the stormwater drainage network sub-systems at the neighborhood level. Please pay attention to the Subtype field to identify the different categories of public vs. private; inlet vs. outlet; and manhole types of stormwater features. Directionality (start vs. end vertices) of these line features reflects real world flow direction. The GIS data in the area of Downtown Fuquay-Varina has a lot of old and erroneous stormwater features. A project is currently underway to correct much of this inaccurate stormwater data. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersWater Meter VaultsRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  17. a

    Fuquay-Varina Utilities - Water System - Water Lines

    • hub.arcgis.com
    • data.wake.gov
    • +3more
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Water System - Water Lines [Dataset]. https://hub.arcgis.com/maps/tofv::fuquay-varina-utilities-water-system-water-lines
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Water Lines (pipes) within Fuquay-Varina. This is a rather extensive collection of a number of sub-types of water lines, and includes both public and privately owned features. Mainly, there are public water mains, public hydrants legs, private hydrant/fire legs, and private mains/service lines. Water service lines (i.e. service legs from mains to meters) maintained by the Town are only recently being mapped in our GIS system and are limited. When using this data, please pay close attention to WLine_Subtype and OWNEDBY fields. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  18. w

    Fuquay-Varina Utilities - Stormwater System - Stormwater Points

    • data.wakegov.com
    Updated Mar 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Stormwater System - Stormwater Points [Dataset]. https://data.wakegov.com/datasets/175109463e4f44c8a6bbe9f3d364400d
    Explore at:
    Dataset updated
    Mar 23, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Stormwater collection/conveyance point features in Fuquay-Varina (e.g. inlets and outlets, and stormwater manholes/junction boxes). Please note that many of the stormwater point features represent privately owned and maintained stormwater features, and these are essential for mapping and understanding the stormwater drainage network sub-systems at the neighborhood level. Please pay attention to the Subtype field to identify the different categories of public vs. private; inlet vs. outlet; and manhole types of stormwater features. Directionality (start vs. end vertices) of these line features reflects real world flow direction. The GIS data in the area of Downtown Fuquay-Varina has a lot of old and erroneous stormwater features. A project is currently underway to correct much of this inaccurate stormwater data. Please note that ALL public utility data layers can be downloaded in one .lpk ArcGIS layer package file (click here), for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful free open source software, but you must extract the file geodatabase from the .lpk file using a zip program like 7zip or WinRAR.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersWater Meter VaultsRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  19. a

    Fuquay-Varina Utilities - Water System - Water Tanks

    • hub.arcgis.com
    • data-wake.opendata.arcgis.com
    Updated Mar 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Water System - Water Tanks [Dataset]. https://hub.arcgis.com/maps/tofv::fuquay-varina-utilities-water-system-water-tanks/about
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Above ground Water Tank points in Fuquay-Varina. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  20. c

    Civic Addresses

    • openkingston.cityofkingston.ca
    • data.wu.ac.at
    csv, excel, geojson +1
    Updated Mar 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Civic Addresses [Dataset]. https://openkingston.cityofkingston.ca/explore/dataset/civic-addresses/table/
    Explore at:
    json, geojson, excel, csvAvailable download formats
    Dataset updated
    Mar 23, 2022
    Description

    Representation of civic addresses throughout the City of Kingston, Ontario. Addresses may represent properties, individual buildings, and/or other structures and is updated on an ongoing basis.TIP: To download the entire dataset please use GeoJSON or KML formats. Shapefile export is limited to 50k records.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zhu, Guang-Fu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939

Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions

Explore at:
Dataset updated
Apr 12, 2022
Dataset provided by
Zhu, Guang-Fu
Liu, Jie
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Tibetan Plateau
Description

Introduction

Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

Data processing

We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

Version

Version 2022.1.

Acknowledgements

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

Citation

Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

Contacts

Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

Institution: Kunming Institute of Botany, Chinese Academy of Sciences

Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

Copyright

This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

Search
Clear search
Close search
Google apps
Main menu