61 datasets found
  1. d

    GIS2DJI: GIS file to DJI Pilot kml conversion tool

    • search.dataone.org
    • borealisdata.ca
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cadieux, Nicolas (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. https://search.dataone.org/view/sha256%3Ad201e0d38014f27dece7af97f02f913e6873df90ffad67aceea4a221ef02d76f
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    Borealis
    Authors
    Cadieux, Nicolas
    Description

    GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

  2. B

    Shapefile to DJI Pilot KML conversion tool

    • borealisdata.ca
    • search.dataone.org
    Updated Jan 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Cadieux (2023). Shapefile to DJI Pilot KML conversion tool [Dataset]. http://doi.org/10.5683/SP3/W1QMQ9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 30, 2023
    Dataset provided by
    Borealis
    Authors
    Nicolas Cadieux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.

  3. o

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • explore.openaire.eu
    • zenodo.org
    Updated Apr 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432939
    Explore at:
    Dataset updated
    Apr 11, 2022
    Authors
    Jie Liu; Guang-Fu Zhu
    Area covered
    Tibetan Plateau
    Description

    Introduction Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results. The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets: (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder. (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro. (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder. Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific. More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document. Data processing We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package. Version Version 2022.1. Acknowledgements This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files. Citation Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940 Contacts Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn; Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn Institution: Kunming Institute of Botany, Chinese Academy of Sciences Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China Copyright This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). {"references": ["Bolch, T., Kulkarni, A., K\u00e4\u00e4b, A., Huggel, C., Paul, F., Cogley, J. G., Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336, 310-314. https...

  4. Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota (NPS, GRD, GRI, WICA, WCAM digital map) adapted from U.S. Geological Survey unpublished mylars by DeWitt (2003) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-wind-cave-national-park-area-south-dakota-nps-grd-gri-wica
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    South Dakota
    Description

    The Unpublished Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (wcam_geology.gdb), a 10.1 ArcMap (.mxd) map document (wcam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (wica_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (wica_geology_gis_readme.pdf). Please read the wica_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wcam_geology_metadata.txt or wcam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Wind Cave National Park.

  5. d

    Projections of shoreline change of current and future (2005-2100) sea-level...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Projections of shoreline change of current and future (2005-2100) sea-level rise scenarios for the U.S. Atlantic Coast [Dataset]. https://catalog.data.gov/dataset/projections-of-shoreline-change-of-current-and-future-2005-2100-sea-level-rise-scenarios-f
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, East Coast of the United States
    Description

    This dataset contains projections of shoreline change and uncertainty bands for future scenarios of sea-level rise (SLR). Scenarios include 25, 50, 75, 100, 150, 200, and 300 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2005, in accordance with recent SLR projections and guidance from the National Oceanic and Atmospheric Administration (NOAA; see process steps).Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model (described in Vitousek and others, 2017; 2021; 2023) run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SDS) observations. Shoreline positions from models are generated at pre-determined cross-shore transects and output includes different cases covering important model behaviors (cases are described in process steps of metadata; see citations listed in the Cross References section for more details on the methodology and supporting information). This model shows change in shoreline positions along transects, considering sea level, wave conditions, along-shore/cross-shore sediment transport, long-term trends due to sediment supply, and estimated variability due to unresolved processes (as described in Vitousek and others, 2021). Variability associated with complex coastal processes (for example, beach cusps/undulations and shore-attached sandbars) are included via a noise parameter in a model, which is tuned using observations of shoreline change at each transect and run in an ensemble of 200 simulations; this approach allows for a representation of statistical variability in a model that is assimilated with sequences of noisy observations. The model synthesizes and improves upon numerous, well-established shoreline models in the scientific literature; processes and methods are described in this metadata (see lineage and process steps), but also described in more detail in Vitousek and others 2017, 2021, and 2023. KMZ data are readily viewable in Google Earth. For best display of results, it is recommended to turn off any 3D features or terrain. For technical users and researchers, shapefile and KMZ data can be ingested into geographic information system (GIS) software such as Global Mapper or QGIS.

  6. d

    HUN Mine footprints for GW modelling v01

    • data.gov.au
    • demo.dev.magda.io
    • +1more
    Updated Aug 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2023). HUN Mine footprints for GW modelling v01 [Dataset]. https://data.gov.au/data/dataset/groups/93f99710-e84a-41c0-9c4f-4da9712c3263
    Explore at:
    Dataset updated
    Aug 9, 2023
    Dataset authored and provided by
    Bioregional Assessment Program
    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    Shapefile of Hunter mine footprints used for Groundwater modeling.

    Dataset History

    Kmz files from the source data were converted to shapefile polygons using ArcGIS conversion tools.

    Dataset Citation

    Bioregional Assessment Programme (XXXX) HUN Mine footprints for GW modelling v01. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/93f99710-e84a-41c0-9c4f-4da9712c3263.

    Dataset Ancestors

  7. r

    Sentinel-2 UTM Tiling Grid (ESA)

    • researchdata.edu.au
    • catalogue.eatlas.org.au
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meyers, Justin (2016). Sentinel-2 UTM Tiling Grid (ESA) [Dataset]. https://researchdata.edu.au/sentinel-2-utm-grid-esa/2974924
    Explore at:
    Dataset updated
    2016
    Dataset provided by
    Australian Ocean Data Network
    Authors
    Meyers, Justin
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    This dataset shows the tiling grid and their IDs for Sentinel 2 satellite imagery. The tiling grid IDs are useful for selecting imagery of an area of interest.

    Sentinel 2 is an Earth observation satellite developed and operated by the European Space Agency (ESA). Its imagery has 13 bands in the visible, near infrared and short wave infrared part of the spectrum. It has a spatial resolution of 10 m, 20 m and 60 m depending on the spectral band.

    Sentinel-2 has a 290 km field of view when capturing its imagery. This imagery is then projected on to a UTM grid and made available publicly on 100x100 km2 tiles. Each tile has a unique ID. This ID scheme allows all imagery for a given tile to be located.

    Provenance:

    The ESA make the tiling grid available as a KML file (see links). We were, however, unable to convert this KML into a shapefile for deployment on the eAtlas. The shapefile used for this layer was sourced from the Git repository developed by Justin Meyers (https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index).

    Why is this dataset in the eAtlas?:

    Sentinel 2 imagery is very useful for the studying and mapping of reef systems. Selecting imagery for study often requires knowing what the tile grid IDs are for the area of interest. This dataset is intended as a reference layer. The eAtlas is not a custodian of this dataset and copies of the data should be obtained from the original sources.

    Data Dictionary:

    • Name: UTM code associated with each tile. For example 55KDV
  8. d

    Data from: Projections of shoreline change for California due to 21st...

    • catalog.data.gov
    • gimi9.com
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Projections of shoreline change for California due to 21st century sea-level rise [Dataset]. https://catalog.data.gov/dataset/projections-of-shoreline-change-for-california-due-to-21st-century-sea-level-rise
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    This dataset contains projections of shoreline change and uncertainty bands across California for future scenarios of sea-level rise (SLR). Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SDS) observations across the state. Scenarios include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 and 500 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2000. This model shows change in shoreline positions along pre-determined cross-shore transects, considering sea level, wave conditions, along-shore/cross-shore sediment transport, long-term trends due to sediment supply, and estimated variability due to unresolved processes (as described in Vitousek and others, 2021). Variability associated with complex coastal processes (for example, beach cusps/undulations and shore-attached sandbars) are included via a noise parameter in a model, which is tuned using observations of shoreline change at each transect and run in an ensemble of 200 simulations; this approach allows for a representation of statistical variability in a model that is assimilated with sequences of noisy observations. The model synthesizes and improves upon numerous, well-established shoreline models in the scientific literature; processes and methods are described in this metadata (see lineage and process steps), but also described in more detail in Vitousek and others 2017, 2021, and 2023. Output includes different cases covering important model behaviors (cases are described in process steps of this metadata). KMZ data are readily viewable in Google Earth. For best display of results, it is recommended to turn off any 3D features or terrain. For technical users and researchers, shapefile and KMZ data can be ingested into geographic information system (GIS) software such as Global Mapper or QGIS.

  9. Digital Geologic-GIS Map of the Minidoka National Historic Site, Idaho (NPS,...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Minidoka National Historic Site, Idaho (NPS, GRD, GRI, MIIN, MIIN digital map) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-minidoka-national-historic-site-idaho-nps-grd-gri-miin-mii
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Idaho
    Description

    The Unpublished Digital Geologic-GIS Map of the Minidoka National Historic Site, Idaho is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (miin_geology.gdb), a 10.1 ArcMap (.MXD) map document (miin_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (miin_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (miin_gis_readme.pdf). Please read the miin_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Idaho Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (miin_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/miin/miin_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 11N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Minidoka National Historic Site.

  10. A

    Unpublished Digital Geologic Map of Chickasaw National Recreation Area and...

    • data.amerigeoss.org
    • datadiscoverystudio.org
    • +2more
    api, xml, zip
    Updated Jul 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Unpublished Digital Geologic Map of Chickasaw National Recreation Area and Vicinity, Oklahoma (NPS, GRD, GRI, CHIC, CHIC digital map) [Dataset]. https://data.amerigeoss.org/es/dataset/unpublished-digital-geologic-map-of-chickasaw-national-recreation-area-and-vicinity-oklahoma-np
    Explore at:
    zip, api, xmlAvailable download formats
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States[old]
    Area covered
    Oklahoma
    Description

    The Unpublished Digital Geologic Map of Chickasaw National Recreation Area and Vicinity, Oklahoma is composed of GIS data layers and GIS tables in a 10.0 file geodatabase (chic_geology.gdb), a 10.0 ArcMap (.MXD) map document (chic_geology.mxd), and individual 10.0 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chic_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chic_gis_readme.pdf). Please read the chic_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.0 shapefile format contact Stephanie O’Meara (stephanie_o’meara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (chic_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chic/chic_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Chickasaw National Recreation Area.

  11. Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado (NPS, GRD, GRI, GRSA, GSAM digital map) adapted from U.S. Geological Survey Miscellaneous Field Studies Maps by Lindsey, Johnson, Bruce, Soulliere, Flores and Hafner (1985 to 1991) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-geologic-gis-map-of-parts-of-great-sand-dunes-national-park-and-preser
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Sangre de Cristo Mountains, Colorado
    Description

    The Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gsam_geology.gdb), a 10.1 ArcMap (.mxd) map document (gsam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (grsa_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (grsa_geology_gis_readme.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Great Sand Dunes National Park and Preserve.

  12. g

    Lake Geochemistry of Ontario (compilation) - LakeGeochemON

    • geologyontario.mndm.gov.on.ca
    • mining-anishinabek.hub.arcgis.com
    kml, zip
    Updated Dec 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OGS (2024). Lake Geochemistry of Ontario (compilation) - LakeGeochemON [Dataset]. https://www.geologyontario.mndm.gov.on.ca/ogsearth.html
    Explore at:
    zip, kmlAvailable download formats
    Dataset updated
    Dec 17, 2024
    Dataset authored and provided by
    OGS
    License

    https://www.geologyontario.mndm.gov.on.ca/terms_of_use.htmlhttps://www.geologyontario.mndm.gov.on.ca/terms_of_use.html

    Area covered
    Ontario
    Description

    Lake Geochemistry of Ontario (LakeGeochemON) is a compilation of lake geochemical data for Ontario. This compilation contains information for over 65 000 sample locations and 5.7 million geochemical analytical values and includes quality control (QC) data for blind duplicates and certified reference materials (CRMs). It is based on data compiled from 45 digital data releases (Miscellaneous Release—Data (MRDs)) published by the OGS between 1995 and 2018. It is intended that this compilation will be updated annually.

  13. Unpublished Digital Bedrock Geologic-GIS Map of Gateway National Recreation...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Bedrock Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York (NPS, GRD, GRI, GATE, GWBR digital map) adapted from a New Jersey Geological Survey Digital Geodata Series map by Pristas, R. P. (2004) and a New York State Museum Map and Chart Series map by Rickard, L.V., Isachsen, Y.W., and Fisher, D.W. (1970) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-bedrock-geologic-gis-map-of-gateway-national-recreation-area-and-vicin
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Unpublished Digital Bedrock Geologic-GIS Map of Gateway National Recreation Area and Vicinity, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gwbr_geology.gdb), a 10.1 ArcMap (.MXD) map document (gwbr_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gwbr_gis_readme.pdf). Please read the gwbr_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: New Jersey Geological Survey and New York State Museum. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gwbr_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gwbr_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  14. r

    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries...

    • researchdata.edu.au
    bin
    Updated 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric, Dr (2016). Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA) [Dataset]. https://researchdata.edu.au/675397/675397
    Explore at:
    binAvailable download formats
    Dataset updated
    2016
    Dataset provided by
    eAtlas
    Authors
    Lawrey, Eric, Dr
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Oct 1, 1988 - Aug 30, 2015
    Area covered
    Torres Strait, Great Barrier Reef
    Description

    This dataset consists of a shapefile of the reefs, islands, sand banks, cays and rocks of the whole Great Barrier Reef (GBR) including Torres Strait. This dataset is an extension of the mapping in the GBR Marine Park to include Torres Strait. The Torres Strait region was mapped at a scale of 1:50,000 (Lawrey, E. P., Stewart M., 2016) and these new features are referred to as the "Torres Strait Reef and Island Features" dataset.

    The Complete GBR Reef and Island Features dataset integrates the "Torres Strait Reef and Island Features" dataset with the existing "GBR Features" (Great Barrier Reef Marine Park Authority, 2007) to create a single composite dataset of the whole Great Barrier Reef. This dataset includes 9600 features overall with 5685 from the "GBR Features" dataset and 3927 from the "Torres Strait Reef and Island Features" dataset.

    These two datasets can be easily separated if necessary based on the "DATASET" attribute.

    All new mapped features in Torres Strait were allocated permanent IDs (such as 10-479 for Thursday Island and 09-246 for Mabuiag Reef). These IDs are for easy unambiguous communication of features, especially for unnamed features.

    The reference imagery used for the mapping of the reefs is available on request as it is large (~45 GB). These files are saved in the eAtlas enduring repository.

    Methods:

    This project mapped Torres Strait using a combination of existing island datasets as well as a semi-automated and manual digitising of marine features (reefs and sand banks) from the latest aerial and satellite imagery. No features were added to the dataset without confirmed evidence of their existence and position from at least two satellite image sources. The Torres Strait Reef and Island Feature mapping was integrated with the existing "GBR Features" dataset by GBRMPA to ensure that there were no duplicate feature ID allocations and to create a single dataset of the whole GBR. The overall dataset development was as follows: 1. Dataset collation and image preparation: - Collation of existing maps and datasets. - Download and preparation of the Landsat 5, 7, and 8 satellite image archive for Torres Strait. - Spatial position correction of Landsat imagery against a known reference image. 2. Sand Bank features: - Manual digitisation of sand banks from Landsat 5 imagery. - Conversion to a polygon shapefile for integration with the reef features. 3. Reef features: - Semi-automated digitisation of the marine features from Landsat 5 imagery. - Manual trimming, cleaning and checking of marine features against available aerial and satellite imagery. 4. Island features: - Compilation of island features from existing datasets (DNRM 1:25k Queensland Coastline, and Geoscience Australia Geodata Coast 100k 2004) - Correction of the island features from available aerial and Landsat imagery. 5. Merging: of marine and island features into one dataset. 6. Classification: of mapped features, including splitting fringing reefs based on changes in classification. 7. ID allocation: - Clustering to make groups of related features (i.e. an island, plus its fringing reefs and related sand banks; a reef plus its neighbouring patch reefs, etc.).
    - Merging with the GBR Features dataset. This was to ensure that there were no duplicate allocations of feature IDs. This involved removing any overlapping features above the Great Barrier Reef Marine Park from the GBR Feature dataset. - Allocation of group IDs (i.e. 10-362) following the scheme used in the GBR Features dataset. Using R scripting. - Allocation of subgroup IDs (10-362b) to each feature in the dataset. Using R scripting. 8. Allocation of names: - Names of features were copied from some existing maps (Nautical Charts, 250k, 100k Topographic maps, CSIRO Torres Strait Atlas). For more information about the methods used in the development of this dataset see the associated technical report (Lawrey, E. P., Stewart M., 2016)

    Limitations:

    This dataset has mapped features from remote sensing and thus in some parts of Torres Strait where it is very turbid this may result in an underestimate of boundary of features. It also means that some features may be missing from the dataset.

    This dataset is NOT SUITABLE FOR NAVIGATION.

    The classification of features in this dataset was determined from remote sensing and not in-situ surveys. Each feature has a confidence rating associated with this classification. Features with a 'Low' confidence should be considered only as guidance.

    This project only digitised reefs in Torres Strait, no modifications were made to the features from the integrated GBR Features dataset.

    Format:

    This dataset is available as a shapefile, a set of associated A1 preview maps of the Torres Strait region, ArcMap MXD file with map styling and ArcMap map layer file. The shapefile is also available in KMZ format suitable for viewing in Google Earth. TS_AIMS_NESP_Torres_Strait_Features_V1b_with_GBR_Features.shp (26 MB), TS_AIMS_NESP_Torres_Strait_Features_V1b_with_GBR_Features.kmz: Torres Strait features (3927 polygon features) integrated with the (GBRMPA) GBR Features dataset (5685 polygon features). This dataset covers the entire GBR.

    Data Dictionary:

    • DATASET: (TS Features, GBR Features) Which dataset this feature belongs to. This attribute is used when the Torres Strait Reef and Island Features dataset is merged with the GBRMPA GBR Features dataset.
    • LOC_NAME_S: (e.g. Tobin (Zagarsum) Island (10-147a)) Location Name: Name of the feature and its ID
    • GBR_NAME: (e.g. Tobin (Zagarsum) Island) Name of the features with no ID
    • CHART_NAME: (e.g. Tobin Island) Name of the feature on the Australian Nautical Charts
    • TRAD_NAME: (Zagarsum) Traditional name. From various sources.
    • UN_FEATURE: (TRUE, FALSE) Unnamed Feature: If TRUE then the feature is unnamed. Useful for limiting labels in maps to features with names.
    • LABEL_ID: (10-147a) ID of the feature
    • SORT_GBR_I: (10147) ID of each feature cluster made up from the Latitude ID and Group ID. Used for sorting the features.
    • FEAT_NAME: (Island, Rock, Reef, Cay, Mainland, Bank, Terrestrial Reef, Other ) Classification of the feature that is used in the GBR Features dataset. See 3.6 Classification scheme for more information.
    • LEVEL_1, LEVEL_2, LEVEL_3: Hierarchical classification of the features. See Appendix 3: Feature Classification Descriptions.
    • Checked: (TRUE, FALSE) Flag to record if the feature was reviewed in detail (at a scale of approximately 1:5000) after the initial digitisation. Unchecked features were only reviewed at a coarser scale (1:25000) to spot significant problems.
    • IMG_SOURCE: (Aerial, AGRI, Landsat, ESRI) Imagery type used for the final digitisation checking and correction. (AGRI - AGRI PRISM by GA, Landsat is Landsat 8 or Landsat 5, ESRI - ArcMap satellite basemap)
    • CLASS_SRC: (Aerial, AGRI, Landsat, Google, Marine Chart) Imagery type used to determine the classification of the feature. Often the classification will be an aggregation of information from multiple image sources. This field will record the highest resolution source used. For some small features the classification was obtained from the Marine Chart, generally for Rocky Reefs.
    • CLASS_CONF: (High, Medium, Low) Confidence of the classification applied to the feature. The confidence is dependent on the clarity and range of the imagery available for classification. High - Clear high resolution imagery available (Aerial, Google) with good water visibility. Key characteristics of the classification clear visible. Feature classification fits the context for the neighbouring region. For unconsolidated features (such as sand banks) a High confidence classification would be applied if the shape, colour and context fit and in particular if movement is visible over time-lapse Landsat imagery. Medium - Moderate imagery available (Landsat 8 pan sharpened, some high resolution imagery) that shows key characteristics of the feature and the classification fits the context for the neighbouring region. Low - Only Landsat 5 imagery is available, the feature is small and its origin is unclear from the neighbouring context. This is the default confidence rating for any features that were not individually checked.
    • POLY_ORIG: (QLD_DNRM_Coastline_25k, New, GBR_Features, AU_GA_Coast100k_2004) Original source of the polygon prior to any modifications. New features correspond to all the mapped marine features. Most features from the other source would have been modified as part of the checking and trimming of the dataset.
    • SUB_NO: (100, 101, …) Subgroup number. Numeric count, starting at 100 of each feature in a group. Matches the subgroup ID i.e. 100 -> blank, 101 -> a, 102 -> b, etc.
    • CODE: (e.g. 10-147-102-101) Unique code made from the various IDs. This is a GBR Feature attribute.
    • UNIQUE_ID: (10147102101) Same as the CODE but without the hyphens, This is a GBR Feature attribute. Note: Version 1b, this attribution is currently out of date.
    • FEATURE_C: (100 - 110) Code applied to each of the FEAT_NAMEs.
    • QLD_NAME: (Tobin Island) Same as the GBR_NAME
    • X_COORD: Longitude in decimal degrees east, in GDA94.
    • Y_COORD: Latitude in decimal degrees north, in GDA94.
    • SHAPE_AREA: Shape Area in km2
    • SHAPE_LEN: Shape perimeter length in km
    • CHECKED: (TRUE, FALSE) Whether the features was carefully checked (at a scale of better than ~1:5000) and manually corrected to this level of precision. If FALSE then the feature was only checked to approximately a1:25000 scale.
    • PriorityLn: (TRUE, FALSE) Priority Label - If TRUE then this feature's label should be included in a map. Usually correspond to features with names. Use to reduce near duplicate labels of the islands and their surrounding fringing reefs.
    • COUNTRY: (Australia, Papua-New Guinea) Sovereignty of the feature. This is based on a spatial join with the Australian Maritime Boundaries 2014a. The Territorial Sea and the Exclusive Economic
  15. g

    Unpublished Digital Geologic Map of Glen Canyon National Recreation Area and...

    • gimi9.com
    • datadiscoverystudio.org
    • +3more
    Updated Jul 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Unpublished Digital Geologic Map of Glen Canyon National Recreation Area and Vicinity, Utah, and Arizona (NPS, GRD, GRI, GLCA, GLCA digital map) adapted from Utah Geological Survey digital data and map by Willis and Ehler (2011), and Open-File Report map by Doelling and Willis (1999) [Dataset]. https://gimi9.com/dataset/data-gov_unpublished-digital-geologic-map-of-glen-canyon-national-recreation-area-and-vicinity-utah
    Explore at:
    Dataset updated
    Jul 1, 2024
    Area covered
    Utah
    Description

    The Unpublished Digital Geologic Map of Glen Canyon National Recreation Area and Vicinity, Utah, Arizona is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. These data formats also fully represent all of the features present on a GRI digital map, as well as containing related ancillary information GIS data tables. The data is also available as a 2.2 KMZ/KML file for use in Google Earth. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Utah Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (glca_metadata.xml; available at http://nrdata.nps.gov/glca/nrdata/geology/gis/glca_metadata.xml). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (glca_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Glen Canyon National Recreation Area, as well as Rainbow Bridge National Monument (RABR), Canyonlands National Park (CANY), Capitol Reef National Park (CARE) and Grand Canyon National Park (GRCA).

  16. Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona (NPS, GRD, GRI, NAVA, NAVA digital map) adapted from a U.S. Geological Survey Professional Paper map by Cooley, Harshbarger, Akers, Hardt and Hicks (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-navajo-national-monument-and-vicinity-arizona-nps-grd-gri-nava
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Arizona
    Description

    The Unpublished Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (nava_geology.gdb), a 10.1 ArcMap (.mxd) map document (nava_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (nava_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (nava_geology_gis_readme.pdf). Please read the nava_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nava_geology_metadata.txt or nava_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Navajo National Monument.

  17. g

    Activity Reports-Mineral Exploration

    • geologyontario.mndm.gov.on.ca
    • mining-anishinabek.hub.arcgis.com
    kml
    Updated Dec 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OGS (2024). Activity Reports-Mineral Exploration [Dataset]. https://www.geologyontario.mndm.gov.on.ca/ogsearth.html
    Explore at:
    kmlAvailable download formats
    Dataset updated
    Dec 17, 2024
    Dataset authored and provided by
    OGS
    License

    https://www.geologyontario.mndm.gov.on.ca/terms_of_use.htmlhttps://www.geologyontario.mndm.gov.on.ca/terms_of_use.html

    Description

    Get the latest news on mineral sector activity in Ontario. These reports contain monthly and year-to-date listings of mineral sector activity, and new information available at the Ontario Geological Surveys 8 Resident Geologist District Offices.

  18. g

    Index to Geological Maps, Digital Data and Reports

    • geologyontario.mndm.gov.on.ca
    • mining-anishinabek.hub.arcgis.com
    kml
    Updated Dec 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OGS (2024). Index to Geological Maps, Digital Data and Reports [Dataset]. https://www.geologyontario.mndm.gov.on.ca/ogsearth.html
    Explore at:
    kmlAvailable download formats
    Dataset updated
    Dec 17, 2024
    Dataset authored and provided by
    OGS
    License

    https://www.geologyontario.mndm.gov.on.ca/terms_of_use.htmlhttps://www.geologyontario.mndm.gov.on.ca/terms_of_use.html

    Description

    Geological Maps and Digital Data contains outlines illustrating areas that have published products released by the Ontario Geological Survey.

  19. d

    Digital Geologic-GIS Map of Richmond National Battlefield Park and Vicinity,...

    • datadiscoverystudio.org
    • data.amerigeoss.org
    • +1more
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Digital Geologic-GIS Map of Richmond National Battlefield Park and Vicinity, Virginia (NPS, GRD, GRI, RICH, RICH digital map) adapted from Virginia Division of Geology and Mineral Resources STATEMAP Deliverable maps (2007, 2009, 2011 x3, 2017) and a Report of Investigations map (1974). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/fc27b3f5e1aa42cbb20910d3b1d30ea0/html
    Explore at:
    Dataset updated
    Jun 8, 2018
    Description

    description: The Unpublished Digital Geologic-GIS Map of Richmond National Battlefield Park and Vicinity, Virginia is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (rich_geology.gdb), a 10.1 ArcMap (.MXD) map document (rich_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (rich_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (rich_geology_gis_readme.pdf). Please read the rich_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Virginia Division of Geology and Mineral Resources. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rich_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/rich/rich_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Richmond National Battlefield Park, as well as Maggie L. Walker National Historic Site.; abstract: The Unpublished Digital Geologic-GIS Map of Richmond National Battlefield Park and Vicinity, Virginia is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (rich_geology.gdb), a 10.1 ArcMap (.MXD) map document (rich_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (rich_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (rich_geology_gis_readme.pdf). Please read the rich_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Virginia Division of Geology and Mineral Resources. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rich_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/rich/rich_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Richmond National Battlefield Park, as well as Maggie L. Walker National Historic Site.

  20. g

    Elevation

    • geologyontario.mndm.gov.on.ca
    • mining-anishinabek.hub.arcgis.com
    kml
    Updated Dec 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OGS (2024). Elevation [Dataset]. https://www.geologyontario.mndm.gov.on.ca/ogsearth.html
    Explore at:
    kmlAvailable download formats
    Dataset updated
    Dec 17, 2024
    Dataset authored and provided by
    OGS
    License

    https://www.geologyontario.mndm.gov.on.ca/terms_of_use.htmlhttps://www.geologyontario.mndm.gov.on.ca/terms_of_use.html

    Description

    Elevation contains elevation data acquired from Nasa through the Shuttle Radar Topography Mission.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cadieux, Nicolas (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. https://search.dataone.org/view/sha256%3Ad201e0d38014f27dece7af97f02f913e6873df90ffad67aceea4a221ef02d76f

GIS2DJI: GIS file to DJI Pilot kml conversion tool

Explore at:
Dataset updated
Feb 24, 2024
Dataset provided by
Borealis
Authors
Cadieux, Nicolas
Description

GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

Search
Clear search
Close search
Google apps
Main menu