100+ datasets found
  1. B

    Shapefile to DJI Pilot KML conversion tool

    • borealisdata.ca
    • search.dataone.org
    Updated Jan 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Cadieux (2023). Shapefile to DJI Pilot KML conversion tool [Dataset]. http://doi.org/10.5683/SP3/W1QMQ9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 30, 2023
    Dataset provided by
    Borealis
    Authors
    Nicolas Cadieux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.

  2. B

    GIS2DJI: GIS file to DJI Pilot kml conversion tool

    • borealisdata.ca
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Cadieux (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. http://doi.org/10.5683/SP3/AFPMUJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Borealis
    Authors
    Nicolas Cadieux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

  3. Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  4. Digital Geologic-GIS Map of the Minidoka National Historic Site, Idaho (NPS,...

    • s.cnmilf.com
    • catalog.data.gov
    • +1more
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Minidoka National Historic Site, Idaho (NPS, GRD, GRI, MIIN, MIIN digital map) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-the-minidoka-national-historic-site-idaho-nps-grd-gri-miin-mii
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Idaho
    Description

    The Unpublished Digital Geologic-GIS Map of the Minidoka National Historic Site, Idaho is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (miin_geology.gdb), a 10.1 ArcMap (.MXD) map document (miin_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (miin_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (miin_gis_readme.pdf). Please read the miin_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Idaho Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (miin_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/miin/miin_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 11N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Minidoka National Historic Site.

  5. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United Kingdom, United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  6. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  7. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  8. Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands (NPS, GRD, GRI, VIIS, VIIS digital map) adapted from a U.S. Geological Survey Professional Paper map by Rankin (2002) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-virgin-islands-national-park-virgin-islands-nps-grd-gri-viis-v
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    U.S. Virgin Islands
    Description

    The Unpublished Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (viis_geology.gdb), a 10.1 ArcMap (.mxd) map document (viis_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (viis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (viis_geology_gis_readme.pdf). Please read the viis_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (viis_geology_metadata.txt or viis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 20N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Virgin Islands National Park.

  9. Sentinel-2 UTM Tiling Grid (ESA)

    • catalogue.eatlas.org.au
    • researchdata.edu.au
    Updated Feb 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (AIMS) (2016). Sentinel-2 UTM Tiling Grid (ESA) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/f7468d15-12be-4e3f-a246-b2882a324f59
    Explore at:
    www:link-1.0-http--related, www:link-1.0-http--downloaddata, ogc:wms-1.1.1-http-get-mapAvailable download formats
    Dataset updated
    Feb 1, 2016
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Area covered
    Description

    This dataset shows the tiling grid and their IDs for Sentinel 2 satellite imagery. The tiling grid IDs are useful for selecting imagery of an area of interest.

    Sentinel 2 is an Earth observation satellite developed and operated by the European Space Agency (ESA). Its imagery has 13 bands in the visible, near infrared and short wave infrared part of the spectrum. It has a spatial resolution of 10 m, 20 m and 60 m depending on the spectral band.

    Sentinel-2 has a 290 km field of view when capturing its imagery. This imagery is then projected on to a UTM grid and made available publicly on 100x100 km2 tiles. Each tile has a unique ID. This ID scheme allows all imagery for a given tile to be located.

    Provenance:

    The ESA make the tiling grid available as a KML file (see links). We were, however, unable to convert this KML into a shapefile for deployment on the eAtlas. The shapefile used for this layer was sourced from the Git repository developed by Justin Meyers (https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index).

    Why is this dataset in the eAtlas?:

    Sentinel 2 imagery is very useful for the studying and mapping of reef systems. Selecting imagery for study often requires knowing what the tile grid IDs are for the area of interest. This dataset is intended as a reference layer. The eAtlas is not a custodian of this dataset and copies of the data should be obtained from the original sources.

    Data Dictionary:

    • Name: UTM code associated with each tile. For example 55KDV
  10. Digital Surficial Geologic-GIS Map of Tuzigoot National Monument, Arizona...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Surficial Geologic-GIS Map of Tuzigoot National Monument, Arizona (NPS, GRD, GRI, TUZI, CLAR digital map) adapted from a Arizona Geological Survey Open-File Report map by House and Pearthree (1993) [Dataset]. https://catalog.data.gov/dataset/digital-surficial-geologic-gis-map-of-tuzigoot-national-monument-arizona-nps-grd-gri-tuzi-
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Arizona
    Description

    The Unpublished Digital Surficial Geologic-GIS Map of Tuzigoot National Monument, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (clar_surficial_geology.gdb), a 10.1 ArcMap (.MXD) map document (clar_surficial_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (moca_tuzi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (moca_tuzi_geology_gis_readme.pdf). Please read the moca_tuzi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Arizona Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (clar_surficial_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/tuzi/clar_surficial_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Tuzigoot National Monument.

  11. d

    Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones...

    • datarade.ai
    .json, .xml
    Updated Jun 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones by Country & ZIP [Dataset]. https://datarade.ai/data-products/geopostcodes-boundary-data-global-coverage-880k-polygons-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jun 22, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover postal divisions for the whole world. The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (Geospatial data, Map data, Polygon daa)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  12. d

    Digital Geologic-GIS Map of Moores Creek National Battlefield, North...

    • datasets.ai
    • catalog.data.gov
    33, 57
    Updated Sep 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina (NPS, GRD, GRI, MOCR, MOCR digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Owens (1989) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-moores-creek-national-battlefield-north-carolina-nps-grd-gri-m
    Explore at:
    33, 57Available download formats
    Dataset updated
    Sep 26, 2024
    Dataset authored and provided by
    Department of the Interior
    Description

    The Unpublished Digital Geologic-GIS Map of Moores Creek National Battlefield, North Carolina is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (mocr_geology.gdb), a 10.1 ArcMap (.mxd) map document (mocr_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (mocr_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (mocr_geology_gis_readme.pdf). Please read the mocr_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mocr_geology_metadata.txt or mocr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Moores Creek National Battlefield.

  13. K

    State of Oregon City Limits

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2024). State of Oregon City Limits [Dataset]. https://koordinates.com/layer/97237-state-of-oregon-city-limits/
    Explore at:
    kml, geodatabase, dwg, csv, mapinfo tab, shapefile, mapinfo mif, geopackage / sqlite, pdfAvailable download formats
    Dataset updated
    Feb 26, 2024
    Dataset authored and provided by
    State of Oregon
    Area covered
    Description

    Vector polygon map data of city limits from cities across the State of Oregon containing 241 features.

    City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.

    By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..

    This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.

  14. Tectonic Plate Boundaries

    • hub.arcgis.com
    • amerigeo.org
    • +1more
    Updated Sep 29, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2014). Tectonic Plate Boundaries [Dataset]. https://hub.arcgis.com/datasets/5f01bc7f78d74498aa942455fcd0dc10
    Explore at:
    Dataset updated
    Sep 29, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    117 original plate boundaries from Esri Data and Maps (2007) edited to better match 10 years of earthquakes, land forms and bathymetry from Mapping Our World's WSI_Earth image from module 2. Esri Canada's education layer of plate boundaries and the Smithsonian's ascii file from the download section of the 'This Dynamic Planet' site plate boundaries were used to compare the resulting final plate boundaries for significant differences.

  15. Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota (NPS, GRD, GRI, WICA, WCAM digital map) adapted from U.S. Geological Survey unpublished mylars by DeWitt (2003) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-wind-cave-national-park-area-south-dakota-nps-grd-gri-wica
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    South Dakota
    Description

    The Unpublished Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (wcam_geology.gdb), a 10.1 ArcMap (.mxd) map document (wcam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (wica_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (wica_geology_gis_readme.pdf). Please read the wica_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wcam_geology_metadata.txt or wcam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Wind Cave National Park.

  16. U

    US Ranges

    • usgs.koordinates.com
    csv, dwg, geodatabase +6
    Updated Aug 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2018). US Ranges [Dataset]. https://usgs.koordinates.com/layer/95797-us-ranges/
    Explore at:
    dwg, geopackage / sqlite, mapinfo tab, kml, shapefile, csv, mapinfo mif, geodatabase, pdfAvailable download formats
    Dataset updated
    Aug 23, 2018
    Dataset authored and provided by
    U.S. Geological Survey
    Area covered
    Description

    Geospatial data from U.S. Geological Survey. Export to CAD, GIS, PDF, KML and CSV, and access via API.

  17. Floodplain Management Data Initiative

    • gis-fema.hub.arcgis.com
    Updated Jan 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FEMA AGOL (2022). Floodplain Management Data Initiative [Dataset]. https://gis-fema.hub.arcgis.com/content/d6aafbd5f2d8445aaa0f353bd8415e7e
    Explore at:
    Dataset updated
    Jan 11, 2022
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    FEMA AGOL
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Open data is the first step to an informed, transparent, and engaged floodplain management community throughout the United States and territories. Explore our data and tools, provide feedback on what you would like to see next, and find out about opportunities to get involved.This site provides floodplain management geospatial data that can be useful to support community preparedness, resiliency, research, and more. The data is available for download as CSV, KML, Shapefile, and accessible via web services to support application development and data visualization.

     For updates about floodplain management data, guidance on metadata, and known 
    

    shapefile conversion issues, please contact Martin Waysome at martin.waysome@fema.dhs.gov.Hub Page Lineage:Site Last Major Update: 02/29/2024 Site Initial Creation: Created by Quentin Cummings (quentin.cummings@fema.dhs.gov) 01/22/2022Site Management: Martin Waysome, 01/02/2023

  18. Digital Geologic-GIS Map of Fort Laramie National Historic Site and...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Fort Laramie National Historic Site and Vicinity, Wyoming (NPS, GRD, GRI, FOLA, FOLA digital map) adapted from a U.S. Geological Survey Bulletin map by McGrew (1963) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-fort-laramie-national-historic-site-and-vicinity-wyoming-nps-g
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Fort Laramie, Wyoming
    Description

    The Unpublished Digital Geologic-GIS Map of Fort Laramie National Historic Site and Vicinity, Wyoming is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (fola_geology.gdb), a 10.1 ArcMap (.mxd) map document (fola_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (fola_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (fola_geology_gis_readme.pdf). Please read the fola_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (fola_geology_metadata.txt or fola_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:31,680 and United States National Map Accuracy Standards features are within (horizontally) 16.1 meters or 52.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Fort Laramie National Historic Site.

  19. K

    State of Idaho City Limits

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Idaho City Limits [Dataset]. https://koordinates.com/layer/110616-state-of-idaho-city-limits/
    Explore at:
    geodatabase, dwg, shapefile, csv, kml, pdf, mapinfo mif, mapinfo tab, geopackage / sqliteAvailable download formats
    Dataset updated
    Oct 6, 2022
    Dataset authored and provided by
    State of Idaho
    Area covered
    Description

    Vector polygon map data of city limits from cities across the State of Idaho containing 201 features.

    City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.

    By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..

    This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.

  20. Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona...

    • s.cnmilf.com
    • datasets.ai
    • +2more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona (NPS, GRD, GRI, NAVA, NAVA digital map) adapted from a U.S. Geological Survey Professional Paper map by Cooley, Harshbarger, Akers, Hardt and Hicks (1969) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-navajo-national-monument-and-vicinity-arizona-nps-grd-gri-nava
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Arizona
    Description

    The Unpublished Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (nava_geology.gdb), a 10.1 ArcMap (.mxd) map document (nava_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (nava_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (nava_geology_gis_readme.pdf). Please read the nava_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nava_geology_metadata.txt or nava_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Navajo National Monument.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicolas Cadieux (2023). Shapefile to DJI Pilot KML conversion tool [Dataset]. http://doi.org/10.5683/SP3/W1QMQ9

Shapefile to DJI Pilot KML conversion tool

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 30, 2023
Dataset provided by
Borealis
Authors
Nicolas Cadieux
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.

Search
Clear search
Close search
Google apps
Main menu