100+ datasets found
  1. Machine Learning Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Machine Learning Dataset [Dataset]. https://brightdata.com/products/datasets/machine-learning
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 23, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.

  2. 11 Machine Learning Projects With Datasets

    • kaggle.com
    zip
    Updated Jan 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Summa One (2024). 11 Machine Learning Projects With Datasets [Dataset]. https://www.kaggle.com/datasets/summaone/ml-10pro
    Explore at:
    zip(69465704 bytes)Available download formats
    Dataset updated
    Jan 12, 2024
    Authors
    Summa One
    Description

    Dataset

    This dataset was created by Summa One

    Contents

  3. Data from: NICHE: A Curated Dataset of Engineered Machine Learning Projects...

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO (2023). NICHE: A Curated Dataset of Engineered Machine Learning Projects in Python [Dataset]. http://doi.org/10.6084/m9.figshare.21967265.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.

    GitHub page: https://github.com/soarsmu/NICHE

  4. Top 1000 Kaggle Datasets

    • kaggle.com
    zip
    Updated Jan 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trrishan (2022). Top 1000 Kaggle Datasets [Dataset]. https://www.kaggle.com/datasets/notkrishna/top-1000-kaggle-datasets
    Explore at:
    zip(34269 bytes)Available download formats
    Dataset updated
    Jan 3, 2022
    Authors
    Trrishan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    From wiki

    Kaggle, a subsidiary of Google LLC, is an online community of data scientists and machine learning practitioners. Kaggle allows users to find and publish data sets, explore and build models in a web-based data-science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

    Kaggle got its start in 2010 by offering machine learning competitions and now also offers a public data platform, a cloud-based workbench for data science, and Artificial Intelligence education. Its key personnel were Anthony Goldbloom and Jeremy Howard. Nicholas Gruen was founding chair succeeded by Max Levchin. Equity was raised in 2011 valuing the company at $25 million. On 8 March 2017, Google announced that they were acquiring Kaggle.[1][2]

    Source: Kaggle

  5. A Dataset for Machine Learning Algorithm Development

    • fisheries.noaa.gov
    • catalog.data.gov
    Updated Jan 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Fisheries Science Center (AFSC) (2021). A Dataset for Machine Learning Algorithm Development [Dataset]. https://www.fisheries.noaa.gov/inport/item/63322
    Explore at:
    Dataset updated
    Jan 1, 2021
    Dataset provided by
    Alaska Fisheries Science Center
    Authors
    Alaska Fisheries Science Center (AFSC)
    Area covered
    Beaufort Sea, Chukchi Sea, Alaska, Kotzebue Sound
    Description

    This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.

  6. UCI and OpenML Data Sets for Ordinal Quantification

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Jul 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mirko Bunse; Mirko Bunse; Alejandro Moreo; Alejandro Moreo; Fabrizio Sebastiani; Fabrizio Sebastiani; Martin Senz; Martin Senz (2023). UCI and OpenML Data Sets for Ordinal Quantification [Dataset]. http://doi.org/10.5281/zenodo.8177302
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 25, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mirko Bunse; Mirko Bunse; Alejandro Moreo; Alejandro Moreo; Fabrizio Sebastiani; Fabrizio Sebastiani; Martin Senz; Martin Senz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These four labeled data sets are targeted at ordinal quantification. The goal of quantification is not to predict the label of each individual instance, but the distribution of labels in unlabeled sets of data.

    With the scripts provided, you can extract CSV files from the UCI machine learning repository and from OpenML. The ordinal class labels stem from a binning of a continuous regression label.

    We complement this data set with the indices of data items that appear in each sample of our evaluation. Hence, you can precisely replicate our samples by drawing the specified data items. The indices stem from two evaluation protocols that are well suited for ordinal quantification. To this end, each row in the files app_val_indices.csv, app_tst_indices.csv, app-oq_val_indices.csv, and app-oq_tst_indices.csv represents one sample.

    Our first protocol is the artificial prevalence protocol (APP), where all possible distributions of labels are drawn with an equal probability. The second protocol, APP-OQ, is a variant thereof, where only the smoothest 20% of all APP samples are considered. This variant is targeted at ordinal quantification tasks, where classes are ordered and a similarity of neighboring classes can be assumed.

    Usage

    You can extract four CSV files through the provided script extract-oq.jl, which is conveniently wrapped in a Makefile. The Project.toml and Manifest.toml specify the Julia package dependencies, similar to a requirements file in Python.

    Preliminaries: You have to have a working Julia installation. We have used Julia v1.6.5 in our experiments.

    Data Extraction: In your terminal, you can call either

    make

    (recommended), or

    julia --project="." --eval "using Pkg; Pkg.instantiate()"
    julia --project="." extract-oq.jl

    Outcome: The first row in each CSV file is the header. The first column, named "class_label", is the ordinal class.

    Further Reading

    Implementation of our experiments: https://github.com/mirkobunse/regularized-oq

  7. n

    Data from: Assessing predictive performance of supervised machine learning...

    • data.niaid.nih.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    zip
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Evans Omondi (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model [Dataset]. http://doi.org/10.5061/dryad.wh70rxwrh
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 23, 2023
    Dataset provided by
    Strathmore University
    Authors
    Evans Omondi
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The diamond is 58 times harder than any other mineral in the world, and its elegance as a jewel has long been appreciated. Forecasting diamond prices is challenging due to nonlinearity in important features such as carat, cut, clarity, table, and depth. Against this backdrop, the study conducted a comparative analysis of the performance of multiple supervised machine learning models (regressors and classifiers) in predicting diamond prices. Eight supervised machine learning algorithms were evaluated in this work including Multiple Linear Regression, Linear Discriminant Analysis, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Support Vector Machines, Boosted Regression and Classification Trees, and Multi-Layer Perceptron. The analysis is based on data preprocessing, exploratory data analysis (EDA), training the aforementioned models, assessing their accuracy, and interpreting their results. Based on the performance metrics values and analysis, it was discovered that eXtreme Gradient Boosting was the most optimal algorithm in both classification and regression, with a R2 score of 97.45% and an Accuracy value of 74.28%. As a result, eXtreme Gradient Boosting was recommended as the optimal regressor and classifier for forecasting the price of a diamond specimen. Methods Kaggle, a data repository with thousands of datasets, was used in the investigation. It is an online community for machine learning practitioners and data scientists, as well as a robust, well-researched, and sufficient resource for analyzing various data sources. On Kaggle, users can search for and publish various datasets. In a web-based data-science environment, they can study datasets and construct models.

  8. D

    SYNERGY - Open machine learning dataset on study selection in systematic...

    • dataverse.nl
    csv, json, txt, zip
    Updated Apr 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot (2023). SYNERGY - Open machine learning dataset on study selection in systematic reviews [Dataset]. http://doi.org/10.34894/HE6NAQ
    Explore at:
    txt(212), json(702), zip(16028323), json(19426), txt(263), zip(3560967), txt(305), json(470), txt(279), zip(2355371), json(23201), csv(460956), txt(200), json(685), json(546), csv(63996), zip(2989015), zip(5749455), txt(331), txt(315), json(691), json(23775), csv(672721), json(468), txt(415), json(22778), csv(31919), csv(746832), json(18392), zip(62992826), csv(234822), txt(283), zip(34788857), json(475), txt(242), json(533), csv(42227), json(24548), zip(738232), json(22477), json(25491), zip(11463283), json(17741), csv(490660), json(19662), json(578), csv(19786), zip(14708207), zip(24619707), zip(2404439), json(713), json(27224), json(679), json(26426), txt(185), json(906), zip(18534723), json(23550), txt(266), txt(317), zip(6019723), json(33943), txt(436), csv(388378), json(469), zip(2106498), txt(320), csv(451336), txt(338), zip(19428163), json(14326), json(31652), txt(299), csv(96153), txt(220), csv(114789), json(15452), csv(5372708), json(908), csv(317928), csv(150923), json(465), csv(535584), json(26090), zip(8164831), json(19633), txt(316), json(23494), csv(133950), json(18638), csv(3944082), json(15345), json(473), zip(4411063), zip(10396095), zip(835096), txt(255), json(699), csv(654705), txt(294), csv(989865), zip(1028035), txt(322), zip(15085090), txt(237), txt(310), json(756), json(30628), json(19490), json(25908), txt(401), json(701), zip(5543909), json(29397), zip(14007470), json(30058), zip(58869042), csv(852937), json(35711), csv(298011), csv(187163), txt(258), zip(3526740), json(568), json(21552), zip(66466788), csv(215250), json(577), csv(103010), txt(306), zip(11840006)Available download formats
    Dataset updated
    Apr 24, 2023
    Dataset provided by
    DataverseNL
    Authors
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SYNERGY is a free and open dataset on study selection in systematic reviews, comprising 169,288 academic works from 26 systematic reviews. Only 2,834 (1.67%) of the academic works in the binary classified dataset are included in the systematic reviews. This makes the SYNERGY dataset a unique dataset for the development of information retrieval algorithms, especially for sparse labels. Due to the many available variables available per record (i.e. titles, abstracts, authors, references, topics), this dataset is useful for researchers in NLP, machine learning, network analysis, and more. In total, the dataset contains 82,668,134 trainable data points. The easiest way to get the SYNERGY dataset is via the synergy-dataset Python package. See https://github.com/asreview/synergy-dataset for all information.

  9. Data from: Code4ML: a Large-scale Dataset of annotated Machine Learning Code...

    • zenodo.org
    csv
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous authors; Anonymous authors (2023). Code4ML: a Large-scale Dataset of annotated Machine Learning Code [Dataset]. http://doi.org/10.5281/zenodo.6607065
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous authors; Anonymous authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.

    The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.

    Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.

    The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.

    Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).

    As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).

    The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.

  10. d

    Image dataset of plant-parasitic nematodes associated with cool-season...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Sep 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Image dataset of plant-parasitic nematodes associated with cool-season turfgrass for machine learning and deep learning classification algorithms [Dataset]. https://catalog.data.gov/dataset/image-dataset-of-plant-parasitic-nematodes-associated-with-cool-season-turfgrass-for-machi
    Explore at:
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    The dataset contains micrographs of Hoplolaimus, Helicotylenchus, Meloidogyne, Mesocriconema, Pratylenchus, Trichodorus, and Tylenchorhynchus nematodes. The data were collected using 10×, 20× objectives with a Zeiss Observer Z1 fitted with a Zeiss Axiocam 503 color camera and with 10× and 40× objectives using an Olympus BX51 fitted with a DP74 Olympus camera. Data collected with the Zeiss microscope setup were processed with Zen blue version 2.6 and data collected with the Olympus microscope were processed with CellSens version 4.1. Individual images in the dataset were extracted from videos recorded with Zen blue and CellSens software.Micrographs are grouped by three objectives (10×, 20×, 40×) for seven nematode genera (Hoplolaimus, Helicotylenchus, Meloidogyne, Mesocriconema, Pratylenchus, Trichodorus, Tylenchorhynchus). Number of images:Helicotylenchus827Hoplolaimus995Mesocriconema527Meloidogyne433Pratylenchus666Trichodorus507Tylenchorhynchus1425

  11. Datasets

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bastian Eichenberger; YinXiu Zhan (2023). Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.12958037.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Bastian Eichenberger; YinXiu Zhan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The benchmarking datasets used for deepBlink. The npz files contain train/valid/test splits inside and can be used directly. The files belong to the following challenges / classes:- ISBI Particle tracking challenge: microtubule, vesicle, receptor- Custom synthetic (based on http://smal.ws): particle- Custom fixed cell: smfish- Custom live cell: suntagThe csv files are to determine which image in the test splits correspond to which original image, SNR, and density.

  12. h

    awesome-python

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Hogg, awesome-python [Dataset]. https://huggingface.co/datasets/dylanhogg/awesome-python
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Dylan Hogg
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    www.awesomepython.org

    Hand-picked awesome Python libraries, with an emphasis on data and machine learning 🐍 Dataset used by https://www.awesomepython.org/

      license: mit
    
  13. Machine Learning Tutorials - Example Projects - AI

    • kaggle.com
    zip
    Updated Oct 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMİRHAN BULUT (2022). Machine Learning Tutorials - Example Projects - AI [Dataset]. https://www.kaggle.com/datasets/emirhanai/machine-learning-tutorials-example-projects-ai
    Explore at:
    zip(1587192509 bytes)Available download formats
    Dataset updated
    Oct 20, 2022
    Authors
    EMİRHAN BULUT
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Machine Learning Tutorials - Example Projects - AI

    I am sharing my 28 Machine Learning, Deep Learning (Artificial Intelligence - AI) projects with their data, software and outputs on Kaggle for educational purposes as open source. It appeals to people who want to work in this field, have 0 Machine Learning knowledge, have Intermediate Machine Learning knowledge, specialize in this field (Attracts to all levels). The deep learning projects in it are for advanced level, so I recommend you to start your studies from the Machine Learning section. You can check your own outputs along with the outputs in it. I am happy to share 28 educational projects with the whole world through Kaggle. Knowledge is free and better when shared!

    Algorithms used in it:

    1) Nearest Neighbor
    2) Naive Bayes
    3) Decision Trees
    4) Linear Regression
    5) Support Vector Machines (SVM)
    6) Neural Networks
    7) K-means clustering
    

    Kind regards, Emirhan BULUT

    You can use the links below for communication. If you have any questions or comments, feel free to let me know!

    LinkedIn: https://www.linkedin.com/in/artificialintelligencebulut/ Email: emirhan@novosteer.com

    Emirhan BULUT. (2022). Machine Learning Tutorials - Example Projects - AI [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/4361310

  14. A

    Artificial Intelligence Training Dataset Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Artificial Intelligence Training Dataset Report [Dataset]. https://www.datainsightsmarket.com/reports/artificial-intelligence-training-dataset-1958994
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Artificial Intelligence (AI) Training Dataset market is experiencing robust growth, driven by the increasing adoption of AI across diverse sectors. The market's expansion is fueled by the burgeoning need for high-quality data to train sophisticated AI algorithms capable of powering applications like smart campuses, autonomous vehicles, and personalized healthcare solutions. The demand for diverse dataset types, including image classification, voice recognition, natural language processing, and object detection datasets, is a key factor contributing to market growth. While the exact market size in 2025 is unavailable, considering a conservative estimate of a $10 billion market in 2025 based on the growth trend and reported market sizes of related industries, and a projected CAGR (Compound Annual Growth Rate) of 25%, the market is poised for significant expansion in the coming years. Key players in this space are leveraging technological advancements and strategic partnerships to enhance data quality and expand their service offerings. Furthermore, the increasing availability of cloud-based data annotation and processing tools is further streamlining operations and making AI training datasets more accessible to businesses of all sizes. Growth is expected to be particularly strong in regions with burgeoning technological advancements and substantial digital infrastructure, such as North America and Asia Pacific. However, challenges such as data privacy concerns, the high cost of data annotation, and the scarcity of skilled professionals capable of handling complex datasets remain obstacles to broader market penetration. The ongoing evolution of AI technologies and the expanding applications of AI across multiple sectors will continue to shape the demand for AI training datasets, pushing this market toward higher growth trajectories in the coming years. The diversity of applications—from smart homes and medical diagnoses to advanced robotics and autonomous driving—creates significant opportunities for companies specializing in this market. Maintaining data quality, security, and ethical considerations will be crucial for future market leadership.

  15. Z

    Data from: MLFMF: Data Sets for Machine Learning for Mathematical...

    • data.niaid.nih.gov
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bauer, Andrej; Petković, Matej; Todorovski, Ljupčo (2023). MLFMF: Data Sets for Machine Learning for Mathematical Formalization [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10041074
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    University of Ljubljana
    Institute of Mathematics, Physics, and Mechanics
    Authors
    Bauer, Andrej; Petković, Matej; Todorovski, Ljupčo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MLFMF MLFMF (Machine Learning for Mathematical Formalization) is a collection of data sets for benchmarking recommendation systems used to support formalization of mathematics with proof assistants. These systems help humans identify which previous entries (theorems, constructions, datatypes, and postulates) are relevant in proving a new theorem or carrying out a new construction. The MLFMF data sets provide solid benchmarking support for further investigation of the numerous machine learning approaches to formalized mathematics. With more than 250,000 entries in total, this is currently the largest collection of formalized mathematical knowledge in machine learnable format. In addition to benchmarking the recommendation systems, the data sets can also be used for benchmarking node classification and link prediction algorithms. The four data sets Each data set is derived from a library of formalized mathematics written in proof assistants Agda or Lean. The collection includes

    the largest Lean 4 library Mathlib, the three largest Agda libraries:

    the standard library the library of univalent mathematics Agda-unimath, and the TypeTopology library. Each data set represents the corresponding library in two ways: as a heterogeneous network, and as a list of syntax trees of all the entries in the library. The network contains the (modular) structure of the library and the references between entries, while the syntax trees give complete and easily parsed information about each entry. The Lean library data set was obtained by converting .olean files into s-expressions (see the lean2sexp tool). The Agda data sets were obtained with an s-expression extension of the official Agda repository (use either master-sexp or release-2.6.3-sexp branch). For more details, see our arXiv copy of the paper. Directory structure First, the mlfmf.zip archive needs to be unzipped. It contains a separate directory for every library (for example, the standard library of Agda can be found in the stdlib directory) and some auxiliary files. Every library directory contains

    the network file from which the heterogeneous network can be loaded, a zip of the entries directory that contains (many) files with abstract syntax trees. Each of those files describes a single entry of the library. In addition to the auxiliary files which are used for loading the data (and described below), the zipped sources of lean2sexp and Agda s-expression extension are present. Loading the data In addition to the data files, there is also a simple python script main.py for loading the data. To run it, you will have to install the packages listed in the file requirements.txt: tqdm and networkx. The easiest way to do so is calling pip install -r requirements.txt. When running main.py for the first time, the script will unzip the entry files into the directory named entries. After that, the script loads the syntax trees of the entries (see the Entry class) and the network (as networkx.MultiDiGraph object). Note. The entry files have extension .dag (directed acyclic graph), since Lean uses node sharing, which breaks the tree structure (a shared node has more than one parent node). More information For more information about the data collection process, detailed data (and data format) description, and baseline experiments that were already performed with these data, see our arXiv copy of the paper. For the code that was used to perform the experiments and data format description, visit our github repository https://github.com/ul-fmf/mlfmf-data. Funding Since not all the funders are available in the Zenodo's database, we list them here:

    This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-21-1-0024. The authors also acknowledge the financial support of the Slovenian Research Agency via the research core funding No. P2-0103 and No. P1-0294.

  16. i

    Cooler Labeled Image Dataset

    • images.cv
    zip
    Updated Dec 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Cooler Labeled Image Dataset [Dataset]. https://images.cv/dataset/cooler-image-classification-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 18, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Labeled Cooler images suitable for AI and computer vision.

  17. i

    multi-output regression datasets

    • ieee-dataport.org
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chunyu Wang (2025). multi-output regression datasets [Dataset]. https://ieee-dataport.org/documents/multi-output-regression-datasets
    Explore at:
    Dataset updated
    Nov 20, 2025
    Authors
    Chunyu Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1 ) and there are 16 continuous input variables.

  18. R

    Data from: Project Machine Learning Dataset

    • universe.roboflow.com
    zip
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    soda (2024). Project Machine Learning Dataset [Dataset]. https://universe.roboflow.com/soda-fj5ov/project-machine-learning-8sjsi
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset authored and provided by
    soda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Deteksi Rempah Rempah Bounding Boxes
    Description

    Project Machine Learning

    ## Overview
    
    Project Machine Learning is a dataset for object detection tasks - it contains Deteksi Rempah Rempah annotations for 1,270 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  19. Machine Learning Materials Datasets

    • figshare.com
    txt
    Updated Sep 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dane Morgan (2018). Machine Learning Materials Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.7017254.v5
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 11, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dane Morgan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Three datasets are intended to be used for exploring machine learning applications in materials science. They are formatted in simple form and in particular for easy input into the MAterials Simulation Toolkit - Machine Learning (MAST-ML) package (see https://github.com/uw-cmg/MAST-ML).Each dataset is a materials property of interest and associated descriptors. For detailed information, please see the attached REAME text file.The first dataset for dilute solute diffusion can be used to predict an effective diffusion barrier for a solute element moving through another host element. The dataset has been calculated with DFT methods.The second dataset for perovskite stability gives energies of compostions of potential perovskite materials relative to the convex hull calculated with DFT. The perovskite dataset also includes columns with information about the A site, B site, and X site in the perovskite structure in order to perform more advanced grouping of the data.The third dataset is a metallic glasses dataset which has values of reduced glass transition temperature (Trg) for a variety of metallic alloys. An additional column is included for majority element for each alloy, which can be an interesting property to group on during tests.

  20. Machine learning datasets

    • figshare.com
    xlsx
    Updated Mar 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Songbo Wang (2023). Machine learning datasets [Dataset]. http://doi.org/10.6084/m9.figshare.21640544.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 29, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Songbo Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Machine learning datasets

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2024). Machine Learning Dataset [Dataset]. https://brightdata.com/products/datasets/machine-learning
Organization logo

Machine Learning Dataset

Explore at:
.json, .csv, .xlsxAvailable download formats
Dataset updated
Dec 23, 2024
Dataset authored and provided by
Bright Datahttps://brightdata.com/
License

https://brightdata.com/licensehttps://brightdata.com/license

Area covered
Worldwide
Description

Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.

Search
Clear search
Close search
Google apps
Main menu