https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset provides a series of climate indices derived from reanalysis and model simulations data hosted on the Copernicus Climate Data Store (CDS). These indicators describe how climate variability and change of essential climate variables can impact sectors such as health, agriculture, forestry, energy, tourism, or water and coastal management. Those indices are relevant for adaptation planning at the European and national level and their development was driven by the European Environment Agency (EEA) to address informational needs of climate change adaptation national initiatives across the EU and partner countries as expressed by user requirements and stakeholder consultation. The indices cover the hazard categories introduced by the IPCC and the European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC-CCA). They are also made available interactively through CDS Toolbox public visualisation apps on the European Climate Data Explorer hosted on EEA’s Climate-adapt site. The indices are either downloaded from the CDS where available, or calculated through a specific CDS Toolbox workflow. In this way both the calculations and the resulting data are fully traceable. As they come from different datasets the underlying climate data differ in their technical specification (type and number of climate and impact models involved, bias-corrected or not, periods covered etc.). An effort was made in the dataset selection to limit the heterogeneity of the underlying dataset as ideally the indices should come from the same dataset with identical specifications. The indices related to temperature, precipitation and wind (20 out of 30) were calculated from atmospheric variables in the same datasets: 'Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections', and 'ERA5 hourly data on single levels from 1940 to present'. The other indices are directly available from CDS datasets generated by specific theme projects. More information about this dataset can be found in the documentation. The underlying datasets hosted on the CDS are:
ERA5 hourly data on single levels from 1940 to present - used to calculate most of the temperature, precipitation and wind speed indicators as it provides the historical and observation based baseline used to monitor the indicators. Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections - used to calculate most of the temperature, precipitation and wind speed indicators as it provides bias-corrected sub-daily data. It is used for all the indicators except those specified in the following datasets below. Fire danger indicators for Europe from 1970 to 2098 derived from climate projections - provides the high fire danger days and fire weather indicators. Hydrology-related climate impact indicators from 1970 to 2100 derived from bias adjusted European climate projections - provides the river flood, river discharge, aridity actual, and mean soil moisture indicators. Mountain tourism meteorological and snow indicators for Europe from 1950 to 2100 derived from reanalysis and climate projections - provides the snowfall amount index. Water level change indicators for the European coast from 1977 to 2100 derived from climate projections - provides the relative sea level rise and extreme sea level indicators.
This dataset was produced on behalf of the Copernicus Climate Change Service.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
The Copernicus climate change service (C3S) operational energy dataset provides climate and energy indicators for the European energy sector. The climate-relevant indicators for the energy sector considered are: air temperature, precipitation, incoming solar radiation, wind speed at 10 m and 100 m, and mean sea level air pressure. The energy indicators are electricity demand and power generation from various sources: wind (both onshore and offshore), solar and hydro (run-of-river and reservoir) power. Depending on the indicator, the data are available at the national, regional and grid (approximately 30x30 km) level for most European countries. The spatial aggregation of data over land uses the Eurostat NUTS0 & NUTS2 (Nomenclature des unités territoriales statistiques, 2016) regions. The offshore variables (e.g. offshore wind power) use the European maritime region definitions MAR0 and MAR1. Further information on the NUTS and MAR regions can be found in the documentation. The C3S Energy operational service is composed of three main streams: historical (1979-present), seasonal forecasts and projections (typically covering the period 1970-2100). This historical dataset (1979-present) produces reference climate variables based on the ERA5 reanalysis. Energy variables are generated by transforming the climate variables using a combination of statistical models and physically based data. A comprehensive set of measured energy supply and demand data has been collected from various sources such as the European Network of Transmission System Operators (ENTSO-E). These data provide a crucial reference to assess the robustness of the models used to convert climate into electric energy variables. Data is provided for the European domain, in a multi-variable, multi-timescale view of the climate and energy systems. This is beneficial in anticipating important climate-driven changes in the energy sector, through either long-term planning or medium-term operational activities. This is also used to investigate the role of temperature on electricity demand across Europe, as well as its interaction with the variability of renewable energy generation.
Overview: The Essential Climate Variables for assessment of climate variability from 1979 to present dataset contains a selection of climatologies, monthly anomalies and monthly mean fields of Essential Climate Variables (ECVs) suitable for monitoring and assessment of climate variability and change. Selection criteria are based on accuracy and temporal consistency on monthly to decadal time scales. The ECV data products in this set have been estimated from climate reanalyses ERA-Interim and ERA5, and, depending on the source, may have been adjusted to account for biases and other known deficiencies. Data sources and adjustment methods used are described in the Product User Guide, as are various particulars such as the baseline periods used to calculate monthly climatologies and the corresponding anomalies. Sum of monthly precipitation: This variable is the accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. Spatial resolution: 0:15:00 (0.25°) Temporal resolution: monthly Temporal extent: 1979 - present Data unit: mm * 10 Data type: UInt32 CRS as EPSG: EPSG:4326 Processing time delay: one month
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 DAILY provides aggregated values for each day for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, daily minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Daily total precipitation values are given as daily sums. All other parameters are provided as daily averages. ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Daily aggregates have been calculated based on the ERA5 hourly values of each parameter.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly timeseries (.csv) of derived-ecvs spatially averaged over Case Studies for different climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (1985-2014, 2015-2100). Data are created by RethinkAction project using statistical downscaling method from CMIP6 simulations.
We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.
Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data:
Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c.
Schimanke S., Ridal M., Le Moigne P., Berggren L., Undén P., Randriamampianina R., Andrea U., Bazile E., Bertelsen A., Brousseau P., Dahlgren P., Edvinsson L., El Said A., Glinton M., Hopsch S., Isaksson L., Mladek R., Olsson E., Verrelle A., Wang Z.Q., (2021): CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.622a565a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D.,Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47
Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac
Acknowledgement also to:
DRAAC, 2023, Regional climate data provided by the Regional Ditectorate for the Environment and Climate Change of the Regional Autonomous Government of Azores (https://portal.azores.gov.pt/en/web/draac)
SRAA\CCIAM, 2017. Programa Regional de Alterações Climáticas (PRAC), Secretaria Regional do Ambiente e Ação Climática (SRAA) of the Governo dos Açores, Climate Change Impacts, Adaptation and Modelling (CCIAM) of the Faculdade de Ciências da Universidade de Lisboa (FCUL), https://snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/metadata/8804acd9-9d0f-40fb-bc2e-e4dff8c2b4b1
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:
The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)
*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.
ERA5 הוא הדור החמישי של ניתוח האטמוספרה מחדש של ECMWF לגבי האקלים הגלובלי. ניתוח נתונים מחדש משלב נתונים מהמודל עם תצפיות מרחבי העולם, ויוצר מערך נתונים מלא ועקבי ברחבי העולם. ERA5 מחליף את קודמו, ניתוח מחדש של ERA-Interim. ERA5 DAILY מספק ערכים מצטברים לכל יום בשבעה פרמטרים של ניתוח מחדש של האקלים ב-ERA5: …
http://apps.ecmwf.int/datasets/licences/copernicushttp://apps.ecmwf.int/datasets/licences/copernicus
The Copernicus Climate Change Service (C3S) seasonal forecast service is based on data from several state-of-the-art seasonal prediction systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Climate maps (raster layers .tif) of derived-ecvs with a spatial resolution of 5.5 km (1 km for Azores) obtained by statistically downscaling a set of CMIP6 simulations for different IPCC climate scenarios (historical, SSP1-2.6, SSP2-4.5, SSP5-8.5) and time horizons (reference, short time-horizon, medium time-horizon, long time-horizon). Data are representative of specific climate normals (yearly averaged values) and created by RethinkAction.
We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.
Moreover, we acknowledge the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) to provide access to CMIP6, CERRA, ERA5 and ERA5-Land data:
Acknowledgement also to:
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Air temperature (2 m): Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions.
Processing steps: The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA
The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020. Data available is the weekly average of daily averages, the weekly minimum of daily minima and the weekly maximum of daily maxima of air temperature (2 m).
File naming: Average of daily average: era5_land_t2m_avg_weekly_YYYY_MM_DD.tif Max of daily max: era5_land_t2m_max_weekly_YYYY_MM_DD.tif Min of daily min: era5_land_t2m_min_weekly_YYYY_MM_DD.tif
The date in the file name determines the start day of the week (Saturday).
Pixel value: °C * 10 Example: Value 44 = 4.4 °C
The QML or SLD style files can be used for visualization of the temperature layers.
Coordinate reference system: ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)
Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E
Spatial resolution: 1km
Temporal resolution: weekly
Time period: 01/01/2016 - 12/31/2020
Format: GeoTIFF
Representation type: Grid
Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Lineage: Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.
Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Other resources: https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b
Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Contact: mundialis GmbH & Co. KG, info@mundialis.de
Overview: era5.copernicus: surface temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily surface temperature in degrees Celsius x 10.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/creative-commons-attribute-4-international-licence/creative-commons-attribute-4-international-licence_c590ec322e16932f8b93b4b8ab217421986470c9bbe99a7b1c74f0f62cc5f7b9.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/creative-commons-attribute-4-international-licence/creative-commons-attribute-4-international-licence_c590ec322e16932f8b93b4b8ab217421986470c9bbe99a7b1c74f0f62cc5f7b9.pdf
The Pan-European Climate Database (PECD) provides information on climate and renewable energy variables for both historical and future time periods. For historical data, the ERA5 global reanalysis serves as the underlying climate data, while future projections are based on selected CMIP6 global climate models. The raw climate model data are further processed through downscaling to achieve higher spatial and temporal resolution and by applying bias adjustment. Each energy variable is derived from the underlying climate data, providing datasets for temperature, total precipitation, surface solar radiation downwards and wind speed, as well as energy-related variables such as wind, solar, and hydropower. The PECD dataset has been planned, designed, and produced by the Copernicus Climate Change Service (C3S) in collaboration with the European Network of Transmission System Operators for Electricity (ENTSO-E). This collaboration aims to increase the resilience of energy systems and optimize their performance in response to climate change. The PECD dataset existed prior to this collaboration between C3S and ENTSO-E but did not include future climate change signals. The current PECD dataset produced by C3S is the first to include climate change projections, providing energy analysts, planners, and decision-makers with essential tools for energy planning in the coming decades. The dataset is available in two formats: NetCDF for gridded indicators and CSV for area-averaged indicators. Note: The current PECDv4.1 only includes data from three climate models and one emission scenario. However, it is important to note that the use of a larger set of models is essential to adequately capture the uncertainty inherent in climate projections. The next PECDv4.2, which will be available early next year, will include a wider range of models and scenarios to improve the representation of uncertainty.
http://apps.ecmwf.int/datasets/licences/copernicushttp://apps.ecmwf.int/datasets/licences/copernicus
developed by C3S at ECMWF
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
ERA5-Land daily: Total precipitation, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)
Source data:
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Total precipitation:
Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step.
Processing steps:
The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to:
- aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum)
- while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/).
For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.
The steps included aggregation and enhancement, specifically:
1. spatially aggregate CHELSA to the resolution of ERA5-Land
2. calculate proportion of ERA5-Land / aggregated CHELSA
3. interpolate proportion with a Gaussian filter to 30 arc seconds
4. multiply the interpolated proportions with CHELSA
Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA.
Data available is the daily sum of precipitation.
File naming:era5_land_daily_prectot_YYYYMMDD_sum_30sec.tif
e.g.:era5_land_daily_prectot_20200418_sum_30sec.tif
The date within the filename is Year, Month and Day of timestamp.
Pixel values:
mm * 10
Scaled to Integer, example: value 218 = 21.8 mm
Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:
north: 82:00:30N
south: 18:00:00N
west: 32:00:30W
east: 70:00:00E
Temporal extent:
01.01.2000 - 31.12.2020
NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.
Spatial resolution:
30 arc seconds (approx. 1000 m)
Temporal resolution:
daily
Lineage:
Dataset has been processed from Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Format: GeoTIFF
Original ERA5-Land dataset license:
https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4
Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Representation type: Grid
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Contact:
mundialis GmbH & Co. KG, info@mundialis.de
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ERA5-Land monthly averaged data January 2019
Dataset has been retrieved on the Copernicus Climate data Store (https://cds.climate.copernicus.eu/#!/home) and is meant to be used for teaching purposes only. This dataset is used in the Galaxy training on "Visualize Climate data with Panoply in Galaxy".
See https://training.galaxyproject.org/ (topic: climate) for more information.
Product type:Monthly averaged reanalysis
Variable:
10m u-component of wind, 10m v-component of wind, 2m temperature, Leaf area index, high vegetation, Leaf area index, low vegetation, Snow cover, Snow depth
Year:
2019
Month:
January
Time:
00:00
Format:
NetCDF (experimental)
ERA5-Land to zestaw danych z ponownym przeanalizowaniem, który zapewnia spójny obraz ewolucji zmiennych dotyczących lądu w ciągu kilku dekad w ulepszonej rozdzielczości w porównaniu z ERA5. Dane ERA5-Land zostały wygenerowane przez odtworzenie komponentu lądowego w ramach ponownej analizy klimatu ECMWF ERA5. Reanalysis łączy dane modelu z obserwacjami z całego świata…
The European Centre for Medium-Range Weather Forecasts (ECMWF) produces daily fire danger forecasts and reanalysis products from the Global ECMWF Fire Forecast (GEFF) model. Reanalysis is available through the Copernicus Climate Data Store (CDS) while the medium-range real-time forecast is available through the EFFIS and GWIS platforms.
This repository provides FWI sample datasets for the assessment of the wildfires occurred in Sweden on 15-20 July 2018:
GEFF-reanalysis, which provides historical records of fire danger conditions
GEFF-realtime provides real-time forecasts generated using weather forcings from the model cycle 45r1 of the ECMWF’s Integrated Forecasting System (IFS).
Geographical bounding box: lon_min = 10.1, lon_max = 24.8, lat_min = 55, lat_max = 69
Please note, the sample data provided in this repository is intended to be used for education purposes only (e.g. training courses).
These products have been developed as part of the EU-funded Copernicus Emergency Management Services (CEMS) and complement other Copernicus products related to fire, such as the biomass-burning emissions made available by the Copernicus Atmosphere Monitoring Service (CAMS). The development of the GEFF modelling system was funded through a third-party agreement with the European Commission’s Joint Research Centre (JRC).
GEFF produces fire danger indices based on the Canadian Fire Weather index as well as the US and Australian fire danger models. GEFF datasets are under the Copernicus license, which provides users with free, full and open access to environmental data.
For more information, please refer to the documentation on the CDS and on the EFFIS website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ERA5 reanalysis data obtained for each fire, hourly and at different pressure levels (37) from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS). The files are in netCDF format, and the variables requested: temperature, relative humidity, U-component of wind, and V-component of wind.
Source: Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2018): ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset provides a series of climate indices derived from reanalysis and model simulations data hosted on the Copernicus Climate Data Store (CDS). These indicators describe how climate variability and change of essential climate variables can impact sectors such as health, agriculture, forestry, energy, tourism, or water and coastal management. Those indices are relevant for adaptation planning at the European and national level and their development was driven by the European Environment Agency (EEA) to address informational needs of climate change adaptation national initiatives across the EU and partner countries as expressed by user requirements and stakeholder consultation. The indices cover the hazard categories introduced by the IPCC and the European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC-CCA). They are also made available interactively through CDS Toolbox public visualisation apps on the European Climate Data Explorer hosted on EEA’s Climate-adapt site. The indices are either downloaded from the CDS where available, or calculated through a specific CDS Toolbox workflow. In this way both the calculations and the resulting data are fully traceable. As they come from different datasets the underlying climate data differ in their technical specification (type and number of climate and impact models involved, bias-corrected or not, periods covered etc.). An effort was made in the dataset selection to limit the heterogeneity of the underlying dataset as ideally the indices should come from the same dataset with identical specifications. The indices related to temperature, precipitation and wind (20 out of 30) were calculated from atmospheric variables in the same datasets: 'Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections', and 'ERA5 hourly data on single levels from 1940 to present'. The other indices are directly available from CDS datasets generated by specific theme projects. More information about this dataset can be found in the documentation. The underlying datasets hosted on the CDS are:
ERA5 hourly data on single levels from 1940 to present - used to calculate most of the temperature, precipitation and wind speed indicators as it provides the historical and observation based baseline used to monitor the indicators. Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections - used to calculate most of the temperature, precipitation and wind speed indicators as it provides bias-corrected sub-daily data. It is used for all the indicators except those specified in the following datasets below. Fire danger indicators for Europe from 1970 to 2098 derived from climate projections - provides the high fire danger days and fire weather indicators. Hydrology-related climate impact indicators from 1970 to 2100 derived from bias adjusted European climate projections - provides the river flood, river discharge, aridity actual, and mean soil moisture indicators. Mountain tourism meteorological and snow indicators for Europe from 1950 to 2100 derived from reanalysis and climate projections - provides the snowfall amount index. Water level change indicators for the European coast from 1977 to 2100 derived from climate projections - provides the relative sea level rise and extreme sea level indicators.
This dataset was produced on behalf of the Copernicus Climate Change Service.