Infectious disease experts have predicted a pandemic, saying it was not a question of if but when. Drawing on experiences with severe acute respiratory syndrome (SARS), avian influenza (H5N1), and novel influenza A (H1N1), the World Health Organization (WHO) and other health authorities, such as the Centers for Disease Control and Prevention (CDC), urged nations and local governments to prepare pandemic response plans. Many ministries of health and subnational departments of health around the world have activated those plans in response to coronavirus and are sharing data as required by the updated International Health Regulations.Esri's work with health organizations and government leaders has proven location intelligence from geographic information system (GIS) technology and data to be critical for the following:Assessing risk and evaluating threatsMonitoring and tracking outbreaksMaintaining situational awarenessEnsuring resource allocationNotifying agencies and communitiesThe current coronavirus disease pandemic presents an opportunity to build on the experience and readiness of Esri's existing global user community in health and human services. Through real-time maps, apps, and dashboards, GIS will also facilitate a seamless flow of relevant data as a component of the response from local to global levels. A compelling case exists for building on top of the public health GIS foundation that is already in place both in the United States and around the world.After reading this paper, leadership and senior staff should understand the following:The necessity to apply location intelligence to public health processes in coronavirus responseHow GIS can support immediate and long-term actionWhat resources Esri provides its customers
DO NOT DELETE OR MODIFY THIS ITEM. This item is managed by the ArcGIS Hub application. To make changes to this site, please visit https://hub.arcgis.com/admin/
Florida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.
How your GIS department can respond to COVID-19 (ArcGIS Blog).Your organization likely has most of the tools and data necessary for an effective COVID-19 response. Learn how to bring it all together._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
ArcGIS Technology for Mapping COVID-19 (Esri Training).Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic. This plan will teach you the core ArcGIS technology necessary to understand, prepare for, and respond to COVID-19 in your community or organization.More information about Esri training..._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
GISCorps quickly marshaled its members to build a nationwide map of COVID-19 testing sites.Key TakeawaysGISCorps rallies to provide quick, expert mapping help in times of crisis.Volunteers aggregate data on testing sites to create an authoritative national map.Additional map project memorializes victims and survivors of COVID-19._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
This Power BI dashboard shows the COVID-19 vaccination rate by key demographics including age groups, race and ethnicity, and sex for Tempe zip codes.Data Source: Maricopa County GIS Open Data weekly count of COVID-19 vaccinations. The data were reformatted from the source data to accommodate dashboard configuration. The Maricopa County Department of Public Health (MCDPH) releases the COVID-19 vaccination data for each zip code and city in Maricopa County at ~12:00 PM weekly on Wednesdays via the Maricopa County GIS Open Data website (https://data-maricopa.opendata.arcgis.com/). More information about the data is available on the Maricopa County COVID-19 Vaccine Data page (https://www.maricopa.gov/5671/Public-Vaccine-Data#dashboard). The dashboard’s values are refreshed at 3:00 PM weekly on Wednesdays. The most recent date included on the dashboard is available by hovering over the last point on the right-hand side of each chart. Please note that the times when the Maricopa County Department of Public Health (MCDPH) releases weekly data for COVID-19 vaccines may vary. If data are not released by the time of the scheduled dashboard refresh, the values may appear on the dashboard with the next data release, which may be one or more days after the last scheduled release.Dates: Updated data shows publishing dates which represents values from the previous calendar week (Sunday through Saturday). For more details on data reporting, please see the Maricopa County COVID-19 data reporting notes at https://www.maricopa.gov/5460/Coronavirus-Disease-2019.
This story was originally published in February 2020. While the maps in the story are automatically updated with latest available statistics, the text may include information that is no longer current. For the latest guidelines on coronavirus prevention and mitigation, please visit the CDC's or WHO's information pages.Since December 2019, the novel coronavirus pandemic has touched nearly every country on the planet, and upended the lives of hundreds of millions of people, according to official and unofficial statistics compiled by researchers at Johns Hopkins University.The novel coronavirus belongs to the same family of viruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). COVID-19, as the disease is known, produces mild symptoms in most people, but can also lead to severe respiratory illness.
This webmap displays the percent of population 25 years and over whose highest education completed is associate's degree. This webmap also contains the following layers: City of Corona Limits, State Boundary, County Boundary and Tract Boundary.
The map data and summary statistics data are sourced from Johns Hopkins University and Esri’s Living Atlas. The charts are being sourced from a database created by Timmons Group GIS that leverages the temporal data provided by JHU on github.
Why did we do this?
How did we do this?
The raw data from JHU does not support the temporal charting at the State level or County level, so we created a data pipeline to leverage JHU’s source data files and transforms their raw data into our data model
Key features:
Check out our other ArcGIS Dashboard powered by the new ArcGIS Experience Builder to explore the COVID-19 curves at the country level around the world - Explore the COVID-19 Curve
For additional information, please contact:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Literature review dataset
This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.
This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.
The reference to cite the related paper is the following:
Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y
To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y
Florida COVID-19 Case Line data, exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu. Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/. https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Case_Line_Data_NEW/FeatureServerArchives for this data layer begin on 5/11/2020. Archived data was exported directly from the live FDOH layer into the archive by the University of South Florida Libraries - Digital Heritage and Humanities Collection.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from the Florida Department of Health. This data table represents all laboratory-confirmed cases of COVID-19 in Florida tabulated from the previous day's totals by the Florida Department of Health. Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results.All PUIs fit into one of three residency types:1. Florida residents tested in Florida2. Non-Florida residents tested in Florida 3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outsideof Florida, and were not exposed/infectious in Florida. Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state.Table Guide for Records of Confirmed Positive Cases of COVID-19"County": The Florida county where the individual with COVID-19's case has been processed. "Jurisdiction" of the case:"FL resident" -- a resident of Florida"Non-FL resident" -- someone who resides outside of Florida "Travel_Related": Whether or not the positive case of COVID-19 is designated as related to recent travel by the individual. "No" -- Case designated as not being a risk related to recent travel"Unknown" -- Case designated where a travel-related designation has not yet been made."Yes" -- Case is designated as travel-related for a person who recently traveled overseas or to an area with community"Origin": Where the person likely contracted the virus before arriving / returning to Florida."EDvisit": Whether or not an individual who tested positive for coronavirus visited and was admitted to an Emergency Department related to health conditions surrounding COVID-19."No" -- Individual was not admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Unknown" -- It is unknown whether the individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Yes" -- Individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19“Hospitalized”: Whether or not a patient who receives a positive laboratory confirmed test for COVID-19 receives inpatient care at a hospital at any time during illness. These people may no longer be hospitalized. This information does not indicate that a COVID-19 positive person is currently hospitalized, only that they have been hospitalized for health conditions relating to COVID-19 at some point during their illness. "No" -- Individual was not admitted for inpatient care at a hospital at any time during illness "Unknown" -- It is unknown whether the individual was admitted for inpatient care at a hospital at any time during illness "Yes" -- Individual was admitted for inpatient care at a hospital at some point during the illness "Died": Whether or not the individual who tested positive for COVID-19 died as a result of health complications from the viral infection. "NA" -- Not applicable / resident has not died "Yes" -- Individual died of a health complication resulting from COVID-19 "Contact": Whether the person contracted COVID-19 from contact with current or previously confirmedcases."No" -- Case with no known contact with current or previously confirmed cases"Yes" -- Case with known contact with current or previously confirmed cases"Unknown" -- Case where contact with current or previous confirmedcases is not known or under investigation"Case_": The date the positive laboratory result was received in the Department of Health’s database system and became a “confirmed case.” This is not the date a person contracted the virus, became symptomatic, or was treated. Florida does not create a case or count suspected/probable cases in the case counts without a confirmed-positive lab result. "EventDate": When the individual reported likely first experiencing symptoms related to COVID-19. "ChartDate": Also the date the positive laboratory result for an individual was received in the Department ofHealth’s database system and became a recorded, “confirmed case” of COVID-19 in the state. Data definitions updated by the FDOH on 5/13/2020.
GIS Feature class polygon of Zip codes in Jefferson County joined with Latest Confirmed Cases by Zip code without Long Term Care and Population of 2019 ACS Demographic Data by Zip code. This feature is used in the Covid-19 Jefferson County Public Hub Site https://covid-19-in-jefferson-county-ky-lojic.hub.arcgis.com/Note: This data is preliminary, routinely updated, and is subject to change.For questions about this data please contact Angela Graham (Angela.Graham@louisvilleky.gov) or YuTing Chen (YuTing.Chen@louisvilleky.gov) or call (502) 574-8279.
DO NOT DELETE OR MODIFY THIS ITEM. This item is managed by the ArcGIS Hub application. To make changes to this site, please visit https://hub.arcgis.com/admin/
Please note, the updated version of this toolbox is now available for download on this page. The COVID-19-Modeling-v1.zip file contains version 5 of the toolbox with updated documentation. Version 5 of the toolbox updates the CHIME Model v1.1.5 tool. The COVID-19Surge (CDC) model is unchanged in this version.More information about the toolbox can be found in the toolbox document. More information about the CHIME Model v1.1.5 tool, including the change log, can be found in the tool documentation and this video.More information about the COVID-19Surge (CDC) tool is included in the tool documentation and this video. CHIME Model v1.1.5 ToolVersion 4 - Updated 11 MAY 2020An implementation of Penn Medicine’s COVID-19 Hospital Impact Model for Epidemics (CHIME) for use in ArcGIS Pro 2.3 or later. This tool leverages SIR (Susceptible, Infected, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation. Version 4 of this tool is based on CHIME v1.1.5 (2020-05-07). Learn more about how CHIME works.Version 4 contains the following updates:Updated the CHIME tool from CHIME v1.1.2 to CHIME v1.1.5.Added a new parameter called Date of Social Distancing Measures Effect to specify the date when social distancing measures started showing their effects.Added a new parameter called Recovery to specify the number of recovered cases at the start of the model.COVID-19Surge (CDC) ToolVersion 1 - Released 04 MAY 2020An implementation of Centers for Disease Control and Prevention’s (CDC) COVID-19Surge for use in ArcGIS Pro 2.3 or later. This tool leverages SIICR (Susceptible, Infected, Infectious, Convalescing, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation based on the extent to which mitigation strategies such as social distancing or shelter-in-place recommendations are implemented. This tool is based on COVID-19Surge. Learn more about how COVID-19Surge works.Potential ApplicationsThe illustration above depicts the outputs of the COVID-19Surge (CDC) tool of the COVID-19 Modeling toolbox.A hospital systems administrator needs a simple model to project the number of patients the hospitals in the network will need to accommodate in the next 90 days due to COVID-19. You know the population served by each hospital, the date and level of current social distancing, the number of people who have recovered, and the number of patients that are currently hospitalized with COVID-19 in each facility. Using your hospital point layer, you run the CHIME Model v1.1.5 tool.An aid agency wants to estimate where and when resources will be required in the counties you serve. You know the population and number of COVID-19 cases today and 14 days ago in each county. You run the COVID-19Surge (CDC) tool using your county polygon data, introducing an Intervention Policy and New Infections Per Case (R0) driven by fields to account for differences in anticipated social distancing policies and effectiveness between counties.A county wants to understand how the lessening or removal of interventions may impact hospital bed availability within the county. You run the CHIME Model v1.1.5 and COVID-19Surge (CDC) tool, checking Add Additional Web App Fields in Summary in both tools. You display the published results from each tool in the Capacity Analysis configurable app so estimates can be compared between models.This toolbox requires any license of ArcGIS Pro 2.3 or higher in order to run. Steps for upgrading ArcGIS Pro can be found here.For questions, comments and support, please visit our COVID-19 GeoNet community.
On March 2, 2022 DC Health announced the District’s new COVID-19 Community Level key metrics and reporting. COVID-19 cases are now reported on a weekly basis. More information available at https://coronavirus.dc.gov. District of Columbia Department of Disability Services testing for the number of positive tests, quarantined, returned to work and lives lost. Due to rapidly changing nature of COVID-19, data for March 2020 is limited.General Guidelines for Interpreting Disease Surveillance DataDuring a disease outbreak, the health department will collect, process, and analyze large amounts of information to understand and respond to the health impacts of the disease and its transmission in the community. The sources of disease surveillance information include contact tracing, medical record review, and laboratory information, and are considered protected health information. When interpreting the results of these analyses, it is important to keep in mind that the disease surveillance system may not capture the full picture of the outbreak, and that previously reported data may change over time as it undergoes data quality review or as additional information is added. These analyses, especially within populations with small samples, may be subject to large amounts of variation from day to day. Despite these limitations, data from disease surveillance is a valuable source of information to understand how to stop the spread of COVID19.
Models and Maps Explore COVID-19 Surges and Capacity to Help Officials PrepareMultiple models provide up-to-date estimates of how many people will need to be hospitalized, and maps help explore hospital capacity and impacts to people.CHIME model_Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Case Indicators’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3e43b07e-23cb-4d29-b660-16d45721576d on 11 February 2022.
--- Dataset description provided by original source is as follows ---
COVID-19 Statistical Indicators (Case Rate, Percent Positivity) for all Postal Codes in Maricopa County.
--- Original source retains full ownership of the source dataset ---
A storymap showing global COVID-19 resources in ArcGIS Insights.Learn how to perform this analysis in ArcGIS Insights using the lesson from the COVID-19 GIS Hub and Learn ArcGIS._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Infectious disease experts have predicted a pandemic, saying it was not a question of if but when. Drawing on experiences with severe acute respiratory syndrome (SARS), avian influenza (H5N1), and novel influenza A (H1N1), the World Health Organization (WHO) and other health authorities, such as the Centers for Disease Control and Prevention (CDC), urged nations and local governments to prepare pandemic response plans. Many ministries of health and subnational departments of health around the world have activated those plans in response to coronavirus and are sharing data as required by the updated International Health Regulations.Esri's work with health organizations and government leaders has proven location intelligence from geographic information system (GIS) technology and data to be critical for the following:Assessing risk and evaluating threatsMonitoring and tracking outbreaksMaintaining situational awarenessEnsuring resource allocationNotifying agencies and communitiesThe current coronavirus disease pandemic presents an opportunity to build on the experience and readiness of Esri's existing global user community in health and human services. Through real-time maps, apps, and dashboards, GIS will also facilitate a seamless flow of relevant data as a component of the response from local to global levels. A compelling case exists for building on top of the public health GIS foundation that is already in place both in the United States and around the world.After reading this paper, leadership and senior staff should understand the following:The necessity to apply location intelligence to public health processes in coronavirus responseHow GIS can support immediate and long-term actionWhat resources Esri provides its customers