Facebook
TwitterReporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (to
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterNote: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and aut
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Facebook
TwitterNote: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d
Facebook
Twitterhttps://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">
Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.
In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.
The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.
The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains a weekly situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).
Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has collected the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. This comprehensive and systematic process was carried out on a daily basis until 14/12/2020. See the discontinued daily dataset: COVID-19 Coronavirus data - daily. ECDC’s decision to discontinue daily data collection is based on the fact that the daily number of cases reported or published by countries is frequently subject to retrospective corrections, delays in reporting and/or clustered reporting of data for several days. Therefore, the daily number of cases may not reflect the true number of cases at EU/EEA level at a given day of reporting. Consequently, day to day variations in the number of cases does not constitute a valid basis for policy decisions.
ECDC continues to monitor the situation. Every week between Monday and Wednesday, a team of epidemiologists screen up to 500 relevant sources to collect the latest figures for publication on Thursday. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.
ECDC receives regular updates from EU/EEA countries through the Early Warning and Response System (EWRS), The European Surveillance System (TESSy), the World Health Organization (WHO) and email exchanges with other international stakeholders. This information is complemented by screening up to 500 sources every day to collect COVID-19 figures from 196 countries. This includes websites of ministries of health (43% of the total number of sources), websites of public health institutes (9%), websites from other national authorities (ministries of social services and welfare, governments, prime minister cabinets, cabinets of ministries, websites on health statistics and official response teams) (6%), WHO websites and WHO situation reports (2%), and official dashboards and interactive maps from national and international institutions (10%). In addition, ECDC screens social media accounts maintained by national authorities on for example Twitter, Facebook, YouTube or Telegram accounts run by ministries of health (28%) and other official sources (e.g. official media outlets) (2%). Several media and social media sources are screened to gather additional information which can be validated with the official sources previously mentioned. Only cases and deaths reported by the national and regional competent authorities from the countries and territories listed are aggregated in our database.
Disclaimer: National updates are published at different times and in different time zones. This, and the time ECDC needs to process these data, might lead to discrepancies between the national numbers and the numbers published by ECDC. Users are advised to use all data with caution and awareness of their limitations. Data are subject to retrospective corrections; corrected datasets are released as soon as processing of updated national data has been completed.
If you reuse or enrich this dataset, please share it with us.
Facebook
Twitterhttps://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Corona Update technology, compiled through global website indexing conducted by WebTechSurvey.
Facebook
TwitterThe COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Facebook
TwitterThis case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 32 data element restricted access dataset. The following apply to the public use datasets and the restricted access dataset: - Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. - Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. - Some data are suppressed to protect individual privacy. - Datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensure that time-dependent outcome data are accurately captured. - Datasets are updated monthly. - Datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. - For more information about data collection and reporting, please see wwwn.cdc.gov/nndss/data-collection.html. - For more information about the COVID-19 case surveillance data, please see www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html. Overview The COVID-19 case surveillance database includes patient-level data reported by U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as "immediately notifiable, urgent (within 24 hours)" by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data collected by jurisdictions are shared voluntarily with CDC. For more information, visit: wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/. COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by pu
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
COVID-19 is a novel coronavirus that emerged in China in 2019. However, Coronaviruses are zoonotic viruses that circulate amongst animals and spill ove9r to humans from time to time and have been causing illness ranging from mild symptoms to severe illness. On 7 January 2020, Chinese authorities confirmed COVID-19 and on 30 January 2020, the Director-General of WHO declared the COVID-19 outbreak a Public Health Emergency of International concern. On 8 March, Bangladesh has confirmed 3 laboratories tested coronavirus cases for the very first time. This Dataset file contains the data for analysing different cases of COVID-19 outbreak in Bangladesh. Date in a specific format, Daily new confirmed cases, Total confirmed cases, Daily new deaths, total deaths, Daily new recovered, Total recovered, Daily New Tests, Total Tests, and Active Cases are the vailable data format for this dataset.
This dataset contains every single days data of COVID-19 outbreak in Bangladesh. From the first confirmed case of COVID-19, on 8 March 2020, it contains each confirmed, recovery, and death cases till date, This is a time-series dataset and this dataset will updated in a daily basis.
I would like to acknowldgwe the following organizations for their great efforts to make these data available for the greater community. Institute of Epidemiology, Disease Control and Research (IEDCR): https://www.iedcr.gov.bd/ DGHS:https://dghs.gov.bd/index.php/en/ Official Website of BD Government: http://www.corona.gov.bd/ WHO: https://www.who.int/countries/bgd/en/
As an academician and data science resercher, I feel this is an ample need for the greater data science community all over the world to understand and develop meaningful insights on the outbreak of COVID-19 in Bangladesh. Constructive suggestions and comments are highly appreciated.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This item has been archived. It is no longer being updated.For current COVID-19 cases data updates, please see the COVID-19 Cases Per 100,000 by Zip Code dashboard, which shows the COVID-19 case rate per 100,000 population by week for each zip code and is supported by the weekly release of data from the Maricopa County Department of Public Health (MCDPH) https://data.tempe.gov/datasets/covid-19-case-indicators/explore.--------As of 3/2/2022 the Arizona Department of Health Services has shifted to a weekly update schedule. We've adjusted our process to update every Wednesday afternoon.This table provides a weekly log of confirmed COVID-19 cases by Zip Code. Data are provided by the Arizona Department of Health Services (ADHS). Data Source: Arizona Department of Health Services (AZDHS) daily COVID-19 report by zip code (https://adhsgis.maps.arcgis.com/apps/opsdashboard/index.html#/84b7f701060641ca8bd9ea0717790906). Daily Change is calculated by taking the current day’s case value for a given Postal Code and subtracting the prior day’s value. This resulting value is the Daily Change. Based on reporting from ADHS Daily Change may be a positive or negative number or 0 if no change has been reported. Moving Average is calculated by summing the current day’s case count with the prior 6 days’ cases for a given Postal Code and dividing by 7.Arizona Department of Health Services (AZDHS) data are scheduled for daily updates at 9:00 AM (COVID-19 cases) and 12:00 PM (COVID-19 vaccinations), but the times when the AZDHS releases that days COVID-19 cases and vaccinations may vary. City of Tempe data are updated each afternoon at 3:00 PM to allow for possible AZDHS delays. When there are AZDHS delays in updating the daily data, dashboard data updates may be delayed by 24 hours. The charts and daily values list can be used to confirm the date of the most recent counts on the COVID-19 cases and vaccinations dashboards. If data are not released by the time of the scheduled daily dashboard refresh, that day's values may appear on the dashboard as an addition to the next day's value.Additional InformationSource: Arizona Department of Health Services (AZDHS) daily COVID-19 report by zip code (https://adhsgis.maps.arcgis.com/apps/opsdashboard/index.html#/84b7f701060641ca8bd9ea0717790906)Contact (author): n/aContact E-Mail (author): n/aContact (maintainer): City of Tempe Open Data TeamContact E-Mail (maintainer): data@tempe.govData Source Type: TablePreparation Method: Data are exposed via ArcGIS Server and its REST API.Publish Frequency: DailyPublish Method: Data are downloaded each afternoon once ADHS updates its public API. Data are transformed and appended to a table in Tempe’s Enterprise GIS.Data Dictionary
Facebook
Twittercorona virus data obtained from: 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE https://github.com/CSSEGISandData/COVID-19
country population data obtained from: https://en.wikipedia.org/wiki/List_of_countries_by_population_(United_Nations)
Australia state population data obtained from: https://www.abs.gov.au
Facebook
TwitterCollection of scholarly articles about COVID-19 and coronavirus family of viruses for use by global research community. Dataset is updated on weekly basis.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only.
Only Chicago residents are included based on the home ZIP Code, as provided by the medical provider, or the address, as provided by the Cook County Medical Examiner.
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted on the date the test specimen was collected. Deaths are those occurring among cases based on the day of death. Hospitalizations are based on the date of first hospitalization. Only one hospitalization is counted for each case. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.
Because of the nature of data reporting to CDPH, hospitalizations will be blank for recent dates They will fill in on later updates when the data are received, although, as for cases and deaths, may continue to be updated as further data are received.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.
Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases, deaths, and hospitalizations, sources used, how cases, deaths and hospitalizations are associated to a specific date, and similar factors.
Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
AbstractThe dataset provided here contains the efforts of independent data aggregation, quality control, and visualization of the University of Arizona (UofA) COVID-19 testing programs for the 2019 novel Coronavirus pandemic. The dataset is provided in the form of machine-readable tables in comma-separated value (.csv) and Microsoft Excel (.xlsx) formats.Additional InformationAs part of the UofA response to the 2019-20 Coronavirus pandemic, testing was conducted on students, staff, and faculty prior to start of the academic year and throughout the school year. These testings were done at the UofA Campus Health Center and through their instance program called "Test All Test Smart" (TATS). These tests identify active cases of SARS-nCoV-2 infections using the reverse transcription polymerase chain reaction (RT-PCR) test and the Antigen test. Because the Antigen test provided more rapid diagnosis, it was greatly used three weeks prior to the start of the Fall semester and throughout the academic year.As these tests were occurring, results were provided on the COVID-19 websites. First, beginning in early March, the Campus Health Alerts website reported the total number of positive cases. Later, numbers were provided for the total number of tests (March 12 and thereafter). According to the website, these numbers were updated daily for positive cases and weekly for total tests. These numbers were reported until early September where they were then included in the reporting for the TATS program.For the TATS program, numbers were provided through the UofA COVID-19 Update website. Initially on August 21, the numbers provided were the total number (July 31 and thereafter) of tests and positive cases. Later (August 25), additional information was provided where both PCR and Antigen testings were available. Here, the daily numbers were also included. On September 3, this website then provided both the Campus Health and TATS data. Here, PCR and Antigen were combined and referred to as "Total", and daily and cumulative numbers were provided.At this time, no official data dashboard was available until September 16, and aside from the information provided on these websites, the full dataset was not made publicly available. As such, the authors of this dataset independently aggregated data from multiple sources. These data were made publicly available through a Google Sheet with graphical illustration provided through the spreadsheet and on social media. The goal of providing the data and illustrations publicly was to provide factual information and to understand the infection rate of SARS-nCoV-2 in the UofA community.Because of differences in reported data between Campus Health and the TATS program, the dataset provides Campus Health numbers on September 3 and thereafter. TATS numbers are provided beginning on August 14, 2020.Description of Dataset ContentThe following terms are used in describing the dataset.1. "Report Date" is the date and time in which the website was updated to reflect the new numbers2. "Test Date" is to the date of testing/sample collection3. "Total" is the combination of Campus Health and TATS numbers4. "Daily" is to the new data associated with the Test Date5. "To Date (07/31--)" provides the cumulative numbers from 07/31 and thereafter6. "Sources" provides the source of information. The number prior to the colon refers to the number of sources. Here, "UACU" refers to the UA COVID-19 Update page, and "UARB" refers to the UA Weekly Re-Entry Briefing. "SS" and "WBM" refers to screenshot (manually acquired) and "Wayback Machine" (see Reference section for links) with initials provided to indicate which author recorded the values. These screenshots are available in the records.zip file.The dataset is distinguished where available by the testing program and the methods of testing. Where data are not available, calculations are made to fill in missing data (e.g., extrapolating backwards on the total number of tests based on daily numbers that are deemed reliable). Where errors are found (by comparing to previous numbers), those are reported on the above Google Sheet with specifics noted.For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu
Facebook
TwitterCoronavirus (COVID-19) – SLC COVID-19 risk assessment updated 26 January 2021
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes CSV files that contain IDs and sentiment scores of the tweets related to the COVID-19 pandemic. The tweets have been collected by an on-going project deployed at https://live.rlamsal.com.np. The model monitors the real-time Twitter feed for coronavirus-related tweets using 90+ different keywords and hashtags that are commonly used while referencing the pandemic. This dataset has been wholly re-designed on March 20, 2020, to comply with the content redistribution policy set by Twitter. Below is the quick overview of this dataset.— Number of tweets : 468,019,953 tweets— Coverage : Global— Language : English (EN)— Geo-tagged tweets : Coronavirus (COVID-19) Geo-tagged Tweets Dataset— Keywords and hashtags (last updated on August 11, 2020) : "corona", "#corona", "coronavirus", "#coronavirus", "covid", "#covid", "covid19", "#covid19", "covid-19", "#covid-19", "sarscov2", "#sarscov2", "sars cov2", "sars cov 2", "covid_19", "#covid_19", "#ncov", "ncov", "#ncov2019", "ncov2019", "2019-ncov", "#2019-ncov", "pandemic", "#pandemic" "#2019ncov", "2019ncov", "quarantine", "#quarantine", "flatten the curve", "flattening the curve", "#flatteningthecurve", "#flattenthecurve", "hand sanitizer", "#handsanitizer", "#lockdown", "lockdown", "social distancing", "#socialdistancing", "work from home", "#workfromhome", "working from home", "#workingfromhome", "ppe", "n95", "#ppe", "#n95", "#covidiots", "covidiots", "herd immunity", "#herdimmunity", "pneumonia", "#pneumonia", "chinese virus", "#chinesevirus", "wuhan virus", "#wuhanvirus", "kung flu", "#kungflu", "wearamask", "#wearamask", "wear a mask", "vaccine", "vaccines", "#vaccine", "#vaccines", "corona vaccine", "corona vaccines", "#coronavaccine", "#coronavaccines", "face shield", "#faceshield", "face shields", "#faceshields", "health worker", "#health worker", "health workers", "#healthworkers", "#stayhomestaysafe", "#coronaupdate", "#frontlineheroes", "#coronawarriors", "#homeschool", "#homeschooling", "#hometasking", "#masks4all", "#wfh", "wash ur hands", "wash your hands", "#washurhands", "#washyourhands", "#stayathome", "#stayhome", "#selfisolating", "self isolating", "bars closed", "restaurants closed"— Dataset updates : Everyday— Usage policy : As per Twitter's Developer PolicyDataset Files (the local time mentioned below is GMT+5:45)corona_tweets_01.csv + corona_tweets_02.csv + corona_tweets_03.csv: 2,475,980 tweets (March 20, 2020 01:37 AM - March 21, 2020 09:25 AM)corona_tweets_04.csv: 1,233,340 tweets (March 21, 2020 09:27 AM - March 22, 2020 07:46 AM)corona_tweets_05.csv: 1,782,157 tweets (March 22, 2020 07:50 AM - March 23, 2020 09:08 AM)corona_tweets_06.csv: 1,771,295 tweets (March 23, 2020 09:11 AM - March 24, 2020 11:35 AM)corona_tweets_07.csv: 1,479,651 tweets (March 24, 2020 11:42 AM - March 25, 2020 11:43 AM)corona_tweets_08.csv: 1,272,592 tweets (March 25, 2020 11:47 AM - March 26, 2020 12:46 PM)corona_tweets_09.csv: 1,091,429 tweets (March 26, 2020 12:51 PM - March 27, 2020 11:53 AM)corona_tweets_10.csv: 1,172,013 tweets (March 27, 2020 11:56 AM - March 28, 2020 01:59 PM)corona_tweets_11.csv: 1,141,210 tweets (March 28, 2020 02:03 PM - March 29, 2020 04:01 PM)> March 29, 2020 04:02 PM - March 30, 2020 02:00 PM -- Some technical fault has occurred. Preventive measures have been taken. Tweets for this session won't be available.corona_tweets_12.csv: 793,417 tweets (March 30, 2020 02:01 PM - March 31, 2020 10:16 AM)corona_tweets_13.csv: 1,029,294 tweets (March 31, 2020 10:20 AM - April 01, 2020 10:59 AM)corona_tweets_14.csv: 920,076 tweets (April 01, 2020 11:02 AM - April 02, 2020 12:19 PM)corona_tweets_15.csv: 826,271 tweets (April 02, 2020 12:21 PM - April 03, 2020 02:38 PM)corona_tweets_16.csv: 612,512 tweets (April 03, 2020 02:40 PM - April 04, 2020 11:54 AM)corona_tweets_17.csv: 685,560 tweets (April 04, 2020 11:56 AM - April 05, 2020 12:54 PM)corona_tweets_18.csv: 717,301 tweets (April 05, 2020 12:56 PM - April 06, 2020 10:57 AM)corona_tweets_19.csv: 722,921 tweets (April 06, 2020 10:58 AM - April 07, 2020 12:28 PM)corona_tweets_20.csv: 554,012 tweets (April 07, 2020 12:29 PM - April 08, 2020 12:34 PM)corona_tweets_21.csv: 589,679 tweets (April 08, 2020 12:37 PM - April 09, 2020 12:18 PM)corona_tweets_22.csv: 517,718 tweets (April 09, 2020 12:20 PM - April 10, 2020 09:20 AM)corona_tweets_23.csv: 601,199 tweets (April 10, 2020 09:22 AM - April 11, 2020 10:22 AM)corona_tweets_24.csv: 497,655 tweets (April 11, 2020 10:24 AM - April 12, 2020 10:53 AM)corona_tweets_25.csv: 477,182 tweets (April 12, 2020 10:57 AM - April 13, 2020 11:43 AM)corona_tweets_26.csv: 288,277 tweets (April 13, 2020 11:46 AM - April 14, 2020 12:49 AM)corona_tweets_27.csv: 515,739 tweets (April 14, 2020 11:09 AM - April 15, 2020 12:38 PM)corona_tweets_28.csv: 427,088 tweets (April 15, 2020 12:40 PM - April 16, 2020 10:03 AM)corona_tweets_29.csv: 433,368 tweets (April 16, 2020 10:04 AM - April 17, 2020 10:38 AM)corona_tweets_30.csv: 392,847 tweets (April 17, 2020 10:40 AM - April 18, 2020 10:17 AM)> With the addition of some more coronavirus specific keywords, the number of tweets captured day has increased significantly, therefore, the CSV files hereafter will be zipped. Lets save some bandwidth.corona_tweets_31.csv: 2,671,818 tweets (April 18, 2020 10:19 AM - April 19, 2020 09:34 AM)corona_tweets_32.csv: 2,393,006 tweets (April 19, 2020 09:43 AM - April 20, 2020 10:45 AM)corona_tweets_33.csv: 2,227,579 tweets (April 20, 2020 10:56 AM - April 21, 2020 10:47 AM)corona_tweets_34.csv: 2,211,689 tweets (April 21, 2020 10:54 AM - April 22, 2020 10:33 AM)corona_tweets_35.csv: 2,265,189 tweets (April 22, 2020 10:45 AM - April 23, 2020 10:49 AM)corona_tweets_36.csv: 2,201,138 tweets (April 23, 2020 11:08 AM - April 24, 2020 10:39 AM)corona_tweets_37.csv: 2,338,713 tweets (April 24, 2020 10:51 AM - April 25, 2020 11:50 AM)corona_tweets_38.csv: 1,981,835 tweets (April 25, 2020 12:20 PM - April 26, 2020 09:13 AM)corona_tweets_39.csv: 2,348,827 tweets (April 26, 2020 09:16 AM - April 27, 2020 10:21 AM)corona_tweets_40.csv: 2,212,216 tweets (April 27, 2020 10:33 AM - April 28, 2020 10:09 AM)corona_tweets_41.csv: 2,118,853 tweets (April 28, 2020 10:20 AM - April 29, 2020 08:48 AM)corona_tweets_42.csv: 2,390,703 tweets (April 29, 2020 09:09 AM - April 30, 2020 10:33 AM)corona_tweets_43.csv: 2,184,439 tweets (April 30, 2020 10:53 AM - May 01, 2020 10:18 AM)corona_tweets_44.csv: 2,223,013 tweets (May 01, 2020 10:23 AM - May 02, 2020 09:54 AM)corona_tweets_45.csv: 2,216,553 tweets (May 02, 2020 10:18 AM - May 03, 2020 09:57 AM)corona_tweets_46.csv: 2,266,373 tweets (May 03, 2020 10:09 AM - May 04, 2020 10:17 AM)corona_tweets_47.csv: 2,227,489 tweets (May 04, 2020 10:32 AM - May 05, 2020 10:17 AM)corona_tweets_48.csv: 2,218,774 tweets (May 05, 2020 10:38 AM - May 06, 2020 10:26 AM)corona_tweets_49.csv: 2,164,251 tweets (May 06, 2020 10:35 AM - May 07, 2020 09:33 AM)corona_tweets_50.csv: 2,203,686 tweets (May 07, 2020 09:55 AM - May 08, 2020 09:35 AM)corona_tweets_51.csv: 2,250,019 tweets (May 08, 2020 09:39 AM - May 09, 2020 09:49 AM)corona_tweets_52.csv: 2,273,705 tweets (May 09, 2020 09:55 AM - May 10, 2020 10:11 AM)corona_tweets_53.csv: 2,208,264 tweets (May 10, 2020 10:23 AM - May 11, 2020 09:57 AM)corona_tweets_54.csv: 2,216,845 tweets (May 11, 2020 10:08 AM - May 12, 2020 09:52 AM)corona_tweets_55.csv: 2,264,472 tweets (May 12, 2020 09:59 AM - May 13, 2020 10:14 AM)corona_tweets_56.csv: 2,339,709 tweets (May 13, 2020 10:24 AM - May 14, 2020 11:21 AM)corona_tweets_57.csv: 2,096,878 tweets (May 14, 2020 11:38 AM - May 15, 2020 09:58 AM)corona_tweets_58.csv: 2,214,205 tweets (May 15, 2020 10:13 AM - May 16, 2020 09:43 AM)> The server and the databases have been optimized; therefore, there is a significant rise in the number of tweets captured per day.corona_tweets_59.csv: 3,389,090 tweets (May 16, 2020 09:58 AM - May 17, 2020 10:34 AM)corona_tweets_60.csv: 3,530,933 tweets (May 17, 2020 10:36 AM - May 18, 2020 10:07 AM)corona_tweets_61.csv: 3,899,631 tweets (May 18, 2020 10:08 AM - May 19, 2020 10:07 AM)corona_tweets_62.csv: 3,767,009 tweets (May 19, 2020 10:08 AM - May 20, 2020 10:06 AM)corona_tweets_63.csv: 3,790,455 tweets (May 20, 2020 10:06 AM - May 21, 2020 10:15 AM)corona_tweets_64.csv: 3,582,020 tweets (May 21, 2020 10:16 AM - May 22, 2020 10:13 AM)corona_tweets_65.csv: 3,461,470 tweets (May 22, 2020 10:14 AM - May 23, 2020 10:08 AM)corona_tweets_66.csv: 3,477,564 tweets (May 23, 2020 10:08 AM - May 24, 2020 10:02 AM)corona_tweets_67.csv: 3,656,446 tweets (May 24, 2020 10:02 AM - May 25, 2020 10:10 AM)corona_tweets_68.csv: 3,474,952 tweets (May 25, 2020 10:11 AM - May 26, 2020 10:22 AM)corona_tweets_69.csv: 3,422,960 tweets (May 26, 2020 10:22 AM - May 27, 2020 10:16 AM)corona_tweets_70.csv: 3,480,999 tweets (May 27, 2020 10:17 AM - May 28, 2020 10:35 AM)corona_tweets_71.csv: 3,446,008 tweets (May 28, 2020 10:36 AM - May 29, 2020 10:07 AM)corona_tweets_72.csv: 3,492,841 tweets (May 29, 2020 10:07 AM - May 30, 2020 10:14 AM)corona_tweets_73.csv: 3,098,817 tweets (May 30, 2020 10:15 AM - May 31, 2020 10:13 AM)corona_tweets_74.csv: 3,234,848 tweets (May 31, 2020 10:13 AM - June 01, 2020 10:14 AM)corona_tweets_75.csv: 3,206,132 tweets (June 01, 2020 10:15 AM - June 02, 2020 10:07 AM)corona_tweets_76.csv: 3,206,417 tweets (June 02, 2020 10:08 AM - June 03, 2020 10:26 AM)corona_tweets_77.csv: 3,256,225 tweets (June 03, 2020 10:27 AM - June 04, 2020 10:23 AM)corona_tweets_78.csv: 2,205,123 tweets (June 04, 2020 10:26 AM - June 05, 2020 10:03 AM) (tweet IDs were extracted from the backup server for this session)corona_tweets_79.csv: 3,381,184 tweets (June 05, 2020 10:11 AM - June 06, 2020 10:16 AM)corona_tweets_80.csv: 3,194,500 tweets (June 06, 2020 10:17 AM - June 07, 2020 10:24 AM)corona_tweets_81.csv: 2,768,780 tweets (June 07, 2020 10:25 AM - June 08, 2020 10:13 AM)corona_tweets_82.csv: 3,032,227 tweets (June 08, 2020 10:13 AM - June 09, 2020 10:12
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
[ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.
Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.
Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths
2020-01-21,Washington,53,1,0
...
County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,cases,deaths
2020-01-21,Snohomish,Washington,53061,1,0
...
In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.
The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.
When the information is available, we count patients where they are being treated, not necessarily where they live.
In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.
For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add information about their locations later, once it became available.
Confirmed cases are patients who test positive for the coronavirus. We consider a case confirmed when it is reported by a federal, state, territorial or local government agency.
For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.
In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances, the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.
Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.
Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.
Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.
All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.
Four counties (Cass, Clay, Jackson, and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their line.
Counts for Alameda County include cases and deaths from Berkeley and the Grand Princess cruise ship.
All cases and deaths for Chicago are reported as part of Cook County.
In general, we are making this data publicly available for broad, noncommercial public use including by medical and public health researchers, policymakers, analysts and local news media.
If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”
If you use it in an online presentation, we would appreciate it if you would link to our U.S. tracking page at https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.
If you use this data, please let us know at covid-data@nytimes.com and indicate if you would be willing to talk to a reporter about your research.
See our LICENSE for the full terms of use for this data.
This license is co-extensive with the Creative Commons Attribution-NonCommercial 4.0 International license, and licensees should refer to that license (CC BY-NC) if they have questions about the scope of the license.
If you have questions about the data or licensing conditions, please contact us at:
covid-data@nytimes.com
Mitch Smith, Karen Yourish, Sarah Almukhtar, Keith Collins, Danielle Ivory, and Amy Harmon have been leading our U.S. data collection efforts.
Data has also been compiled by Jordan Allen, Jeff Arnold, Aliza Aufrichtig, Mike Baker, Robin Berjon, Matthew Bloch, Nicholas Bogel-Burroughs, Maddie Burakoff, Christopher Calabrese, Andrew Chavez, Robert Chiarito, Carmen Cincotti, Alastair Coote, Matt Craig, John Eligon, Tiff Fehr, Andrew Fischer, Matt Furber, Rich Harris, Lauryn Higgins, Jake Holland, Will Houp, Jon Huang, Danya Issawi, Jacob LaGesse, Hugh Mandeville, Patricia Mazzei, Allison McCann, Jesse McKinley, Miles McKinley, Sarah Mervosh, Andrea Michelson, Blacki Migliozzi, Steven Moity, Richard A. Oppel Jr., Jugal K. Patel, Nina Pavlich, Azi Paybarah, Sean Plambeck, Carrie Price, Scott Reinhard, Thomas Rivas, Michael Robles, Alison Saldanha, Alex Schwartz, Libby Seline, Shelly Seroussi, Rachel Shorey, Anjali Singhvi, Charlie Smart, Ben Smithgall, Steven Speicher, Michael Strickland, Albert Sun, Thu Trinh, Tracey Tully, Maura Turcotte, Miles Watkins, Jeremy White, Josh Williams, and Jin Wu.
There's a story behind every dataset and here's your opportunity to share yours.# Coronavirus (Covid-19) Data in the United States
[ U.S. State-Level Data ([Raw
Facebook
TwitterReporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (to