Analytics and Data Visualization for COVID-19 Intelligence.An ArcGIS Blog arcticle that explains how to leverage ready-to-use reports and tutorials to gauge COVID-19 pandemic's impact worldwide._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
The HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions displays State-specific monthly trends in inpatient stays related to COVID-19 and other conditions, and facilitates comparisons of the number of hospital discharges, the average length of stays, and in-hospital mortality rates across patient/stay characteristics and States. This information is based on the HCUP State Inpatient Databases (SID), starting with 2018 data, plus newer annual and quarterly inpatient data, if and when available.
The purpose of this code is to produce a line graph visualization of COVID-19 data. This Jupyter notebook was built and run on Google Colab. This code will serve mostly as a guide and will need to be adapted where necessary to be run locally. The separate COVID-19 datasets uploaded to this Dataverse can be used with this code. This upload is made up of the IPYNB and PDF files of the code.
This dataset was created by Mahadi Hasan Taronno
Modifications done by the CASUS team to the visualization website for MATSim/EpiSim software, originally developed by TU Berlin at https://github.com/matsim-vsp/covid-sim, as used on the Where2Test website https://www.where2test.de/covidsim. Snapshot of the version used on the Where2Test website as of the project end by 26.06.2023 published here to fulfill the obligations of the AGPL license.
Content
The Data Set Work on Covid-19 for state wise Total Cases, Active Cases, Death & Recovery. The Analysis of the Covid-19 Report till updated on 07-May-2021
Inspiration To explore this type of models and learn more about the subject.
The dataset contains COVID-19 statistics for the top countries currently affected by the virus. The data was scraped from two popular sites maintaining daily updates on the spread of COVID-19 - https://www.worldometers.info/ and https://en.wikipedia.org/wiki/COVID-19_pandemic
There are two kinds of csv files. One type of files are country wise daily statistics on COVID-19 spread. The data for the following countries is available:-
For each of these countries, the dataset contains the following columns:-
The second type of file is the overall statistics which contains statistics for all the countries affected in the world. This dataset contains the following columns:-
This dataset tracks the updates made on the dataset "HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions" as a repository for previous versions of the data and metadata.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
AbstractThe dataset provided here contains the efforts of independent data aggregation, quality control, and visualization of the University of Arizona (UofA) COVID-19 testing programs for the 2019 novel Coronavirus pandemic. The dataset is provided in the form of machine-readable tables in comma-separated value (.csv) and Microsoft Excel (.xlsx) formats.Additional InformationAs part of the UofA response to the 2019-20 Coronavirus pandemic, testing was conducted on students, staff, and faculty prior to start of the academic year and throughout the school year. These testings were done at the UofA Campus Health Center and through their instance program called "Test All Test Smart" (TATS). These tests identify active cases of SARS-nCoV-2 infections using the reverse transcription polymerase chain reaction (RT-PCR) test and the Antigen test. Because the Antigen test provided more rapid diagnosis, it was greatly used three weeks prior to the start of the Fall semester and throughout the academic year.As these tests were occurring, results were provided on the COVID-19 websites. First, beginning in early March, the Campus Health Alerts website reported the total number of positive cases. Later, numbers were provided for the total number of tests (March 12 and thereafter). According to the website, these numbers were updated daily for positive cases and weekly for total tests. These numbers were reported until early September where they were then included in the reporting for the TATS program.For the TATS program, numbers were provided through the UofA COVID-19 Update website. Initially on August 21, the numbers provided were the total number (July 31 and thereafter) of tests and positive cases. Later (August 25), additional information was provided where both PCR and Antigen testings were available. Here, the daily numbers were also included. On September 3, this website then provided both the Campus Health and TATS data. Here, PCR and Antigen were combined and referred to as "Total", and daily and cumulative numbers were provided.At this time, no official data dashboard was available until September 16, and aside from the information provided on these websites, the full dataset was not made publicly available. As such, the authors of this dataset independently aggregated data from multiple sources. These data were made publicly available through a Google Sheet with graphical illustration provided through the spreadsheet and on social media. The goal of providing the data and illustrations publicly was to provide factual information and to understand the infection rate of SARS-nCoV-2 in the UofA community.Because of differences in reported data between Campus Health and the TATS program, the dataset provides Campus Health numbers on September 3 and thereafter. TATS numbers are provided beginning on August 14, 2020.Description of Dataset ContentThe following terms are used in describing the dataset.1. "Report Date" is the date and time in which the website was updated to reflect the new numbers2. "Test Date" is to the date of testing/sample collection3. "Total" is the combination of Campus Health and TATS numbers4. "Daily" is to the new data associated with the Test Date5. "To Date (07/31--)" provides the cumulative numbers from 07/31 and thereafter6. "Sources" provides the source of information. The number prior to the colon refers to the number of sources. Here, "UACU" refers to the UA COVID-19 Update page, and "UARB" refers to the UA Weekly Re-Entry Briefing. "SS" and "WBM" refers to screenshot (manually acquired) and "Wayback Machine" (see Reference section for links) with initials provided to indicate which author recorded the values. These screenshots are available in the records.zip file.The dataset is distinguished where available by the testing program and the methods of testing. Where data are not available, calculations are made to fill in missing data (e.g., extrapolating backwards on the total number of tests based on daily numbers that are deemed reliable). Where errors are found (by comparing to previous numbers), those are reported on the above Google Sheet with specifics noted.For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The coronavirus traffic light acts as a dynamic tool for a consistent, coordinated and transparent approach by the authorities to COVID-19 according to the respective epidemiological situation at regional level. The Corona traffic light serves as a guidance system for informing authorities and the public about the corresponding COVID-19 risk. On the basis of the coronavirus traffic light, the Austrian authorities are taking appropriate measures and guidelines for all social and economic sectors at regional level. In order to contain the COVID-19 crisis, the public is asked to take note of and comply with these requirements on an ongoing basis. The recommendations and guidelines are based on the respective epidemiological situation and are flexibly adapted to the respective COVID-19 situation. The measures may apply to the entire federal territory, individual states or districts.
Visual map at kumu.io/access2perspectives/covid19-resources
Data set doi: 10.5281/zenodo.3732377 // available in different formats (pdf, xls, ods, csv,)
Correspondence: (JH) info@access2perspectives.com
Objectives
Provide citizens with crucial and reliable information
Encourage and facilitate South South collaboration
Bridging language barriers
Provide local governments and cities with lessons learned about COVID-19 crisis response
Facilitate global cooperation and immediate response on all societal levels
Enable LMICs to collaborate and innovate across distances and leverage locally available and context-relevant resources
Methodology
The data feeding the map at kumu.io was compiled from online resources and information shared in various community communication channels.
Kumu.io is a visualization platform for mapping complex systems and to provide a deeper understanding of their intrinsic relationships. It provides blended systems thinking, stakeholder mapping, and social network analysis.
Explore the map // https://kumu.io/access2perspectives/covid19-resources#global
Click on individual nodes and view the information by country
info hotlines
governmental informational websites, Twitter feeds & Facebook pages
fact checking online resources
language indicator
DIY resources
clinical staff capacity building
etc.
With the navigation buttons to the right, you can zoom in and out, select and focus on specific elements.
If you have comments, questions or suggestions for improvements on this map email us at info@access2perspectives.com
Contribute
Please add data to the spreadsheet at https://tinyurl.com/COVID19-global-response
you can add additional information on country, city or neighbourhood level (see e.g. the Cape Town entry)
Related documents
Google Doc: tinyurl.com/COVID19-Africa-Response
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease 2019 (COVID-19) time series listing confirmed cases, reported deaths and reported recoveries. Data is disaggregated by country (and sometimes subregion). Coronavirus disease (COVID-19) is caused by the Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and has had a worldwide effect. On March 11 2020, the World Health Organization (WHO) declared it a pandemic, pointing to the over 118,000 cases of the Coronavirus illness in over 110 countries and territories around the world at the time.
This dataset includes time series data tracking the number of people affected by COVID-19 worldwide, including:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A data visualization representing Indonesia's Covid-19 cases have spiked
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used for this manuscript were derived from multiple sources: Denver Public Health, Esri, Google, and SafeGraph. Any reuse or redistribution of the datasets are subjected to the restrictions of the data providers: Denver Public Health, Esri, Google, and SafeGraph and should consult relevant parties for permissions.1. COVID-19 case dataset were retrieved from Denver Public Health (Link: https://storymaps.arcgis.com/stories/50dbb5e7dfb6495292b71b7d8df56d0a )2. Point of Interests (POIs) data were retrieved from Esri and SafeGraph (Link: https://coronavirus-disasterresponse.hub.arcgis.com/datasets/6c8c635b1ea94001a52bf28179d1e32b/data?selectedAttribute=naics_code) and verified with Google Places Service (Link: https://developers.google.com/maps/documentation/javascript/reference/places-service)3. The activity risk information is accessible from Texas Medical Association (TMA) (Link: https://www.texmed.org/TexasMedicineDetail.aspx?id=54216 )The datasets for risk assessment and mapping are included in a geodatabase. Per SafeGraph data sharing guidelines, raw data cannot be shared publicly. To view the content of the geodatabase, users should have installed ArcGIS Pro 2.7. The geodatabase includes the following:1. POI. Major attributes are locations, name, and daily popularity.2. Denver neighborhood with weekly COVID-19 cases and computed regional risk levels.3. Simulated four travel logs with anchor points provided. Each is a separate point layer.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset data visualization contains information on where COVID-19 is spreading by tracking new cases found each day and the total number of cases and deaths in the US on the county-level. The data can be dowloaded and visualized on the website.
Data visualizations of the COVID-19 pandemic in the United States often have presented case and death rates by state in separate visualizations making it difficult to discern the temporal relationship between these two epidemiological metrics. By combining the COVID-19 case and death rates into a single visualization we have provided an intuitive format for depicting the relationship between cases and deaths. Moreover, by using animation we have made the temporal lag between cases and subsequent deaths more obvious and apparent. This work helps to inform expectations for the trajectory of death rates in the United States given the recent surge in case rates.
This dataset was created by Aditya301112
It contains the following files:
This dataset was created by Dhrumil Gohel
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary table of the initial T cell subsets test.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary table of the patient characteristics and the duration of hospitalization.
Analytics and Data Visualization for COVID-19 Intelligence.An ArcGIS Blog arcticle that explains how to leverage ready-to-use reports and tutorials to gauge COVID-19 pandemic's impact worldwide._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...