Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths, based on a 7-day rolling sum of deaths recorded where a diagnosis of Covid-19 within 28 days of the date of death has been recorded.Please note automatic updates to this dataset was discontinued on 3rd July 2023.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Facebook
Twitter*** The County of Santa Clara Public Health Department discontinued updates to the COVID-19 data tables effective June 30, 2025. The COVID-19 data tables will be removed from the Open Data Portal on December 30, 2025. For current information on COVID-19 in Santa Clara County, please visit the Respiratory Virus Dashboard [sccphd.org/respiratoryvirusdata]. For any questions, please contact phinternet@phd.sccgov.org ***
The dataset provides information on cases among residents and staff at LTCFs, which are a critical part of the continuum of health care. LTCFs include skilled nursing, independent living, assisted living and board and care facilities. Source: California Reportable Disease Information Exchange. Data Notes: These data may represent ongoing investigations and as such may change as additional information are collected. Only LTCFs within Santa Clara County are listed. Residents and staff working at these facilities and who are residents of Santa Clara County are included in these counts.
This table was updated for the last time on May 20, 2021.
Facebook
TwitterThe data includes:
case rate per 100,000 population
case rate per 100,000 population aged 60 years and over
percentage change in case rate per 100,000 from previous week
percentage of individuals tested positive
number of individuals tested per 100,000
number of deaths within 28 days of positive COVID-19 test
NHS pressures by Sustainability and Transformation Partnership (STP)
See the detailed data on https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/">hospital activity.
See the https://coronavirus.data.gov.uk/?_ga=2.108721154.1297948817.1612958412-1961839927.1610968060">detailed data on the progress of the coronavirus pandemic. This includes the number of people testing positive, case rates and deaths within 28 days of positive test by upper tier local authority.
See the latest lower-tier local authority watchlist. This includes epidemiological charts containing case numbers, case rates, persons tested and positivity at lower-tier local authority level.
Facebook
TwitterCOVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. 100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent one third of case days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 63 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 6-21 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 6 to 21 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 6-21 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 6-21 days and less than past 2 days indicates slight positive trend, but likely still within peak trend timeframe.Past five days is less than the past 6-21 days. This means a downward trend. This would be an important trend for any administrative area in an epidemic trend that the rate of spread is slowing.If less than the past 2 days, but not the last 6-21 days, this is still positive, but is not indicating a passage out of the peak timeframe of the daily new cases curve.Past 5 days has only one or two new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 6 to 21 days. Most recent 6-21 days: Represents the full tail of the curve and provides context for the past 2- and 5-day trends.If this is greater than both the 2- and 5-day trends, then a short-term downward trend has begun. Mean of Recent Tail NCD in the context of the Mean of All NCD, and raw counts of cases:Mean of Recent NCD is less than 0.5 cases per 100,000 = high level of controlMean of Recent NCD is less than 1.0 and fewer than 30 cases indicate continued emergent trend.3. Mean of Recent NCD is less than 1.0 and greater than 30 cases indicate a change from emergent to spreading trend.Mean of All NCD less than 2.0 per 100,000, and areas that have been in epidemic trends have Mean of Recent NCD of less than 5.0 per 100,000 is a significant indicator of changing trends from epidemic to spreading, now going in the direction of controlled trend.Similarly, in the context of Mean of All NCD greater than 2.0
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. The disease has since spread worldwide, leading to an ongoing pandemic.
This Dataset contains Weekly trends of COVID-19 in different regions of Europe as on March 28, 2022.
Country/Other - Country/Other regions in Europe Cases in the last 7 days - No. of cases in the last 7 days Cases in the preceding 7 days- No. of cases in the preceding 7 days Weekly Case % Change - Weekly change of cases in percentage Cases in the last 7 days/1M pop - Cases in the last 7 days per 1 million population Deaths in the last 7 days - no of deaths in last 7 days Deaths in the preceding 7 days - no of deaths in preceding 7 days Weekly Death % Change - weekly change of deaths in percentage Deaths in the last 7 days/1M pop - Deaths in the last 7 days per 1 million population Population - Population of the region
https://www.worldometers.info/coronavirus/weekly-trends/#weekly_table
Facebook
TwitterCovid-19 Impact on Humanitarian Operations Data Viz inputs. This dataset is part of COVID-19 Pandemic
It's updated daily in the site.: https://data.humdata.org/dataset/covid-19-data-visual-inputs
International restrictions:
Some Governments have suspended all international commercial passenger flights until 30 September.
It will then review the situation. New tourist visa applications are currently suspended. These arrangements are subject to change and at short notice. There are temperature checks for all arrivals. Arrivals must provide evidence of a negative COVID-19 test result. Testing requirements ahead of entry are subject to change. Confirmation should be sought from your local well in advance of your departure.
Arrivals must enter government-arranged quarantine. You will be allotted your quarantine facility on arrival. You may have no choice but will be placed in the same government quarantine facility or hotel as all the other people on your flight. You will be provided with food for which you will be charged.
The standard quarantine period for new arrivals is 28 days (21 days in a government-arranged facility followed by 7 days of home quarantine). However request permission to undergo a shorter quarantine period. In this case the quarantine requirements are as follows: Complete 7 days home quarantine prior to the date of travel. During these 7 days you may only leave your place of quarantine to take a COVID test. Provide evidence of a negative COVID test result. Complete 7 days quarantine in a government facility or government approved hotel on arrival (allocated on arrival). Undertake a COVID test after 7 days (through the National Health Laboratory at a cost is MMK 200 000). If you test negative you must complete a further 7 days of home quarantine and will then be able to leave quarantine. If you test positive you will be transferred to a designated government hospital for COVID patients. You will be required to remain for 28 days in hospital after which you can leave if you have tested negative for COVID for two consecutive weeks prior.
Even for those who have been granted permission to undergo a shorter quarantine period. This includes if any person on a flight tests positive for COVID-19. If hospitalised with coronavirus patients are obliged to use a government facility even if they have private insurance. Patients in government hospitals are generally expected to make their own arrangements for bringing in food and other essential supplies. Lone travellers will not be allowed out of isolation to purchase food or make phone calls. Arrivals will be expected to provide contact details. They are not aware of any requirement to download an app. Public health requirements for humanitarian flighs [https://humanitarianbooking.wfp.org/en/wfp-aviation/]
Internal restrictions:
In some areas there may be local requirements for visitors from other parts of the country to quarantine or self-isolate for up to at least 28 days on arrival. Further local preventative measures may also be in effect in regions townships wards and village tracks . Additional movement restrictions may be imposed in specific townships if COVID-19 cases are found. You should check with local authorities for information on possible local preventative measures.
A curfew from 9pm until 4am each day is currently in effect in all townships with reported COVID-19 cases.
Those living in an area under a Stay at Home order should stay in their homes. Unless they have permission from the local ward administrator to go outside. Permission to go outside is generally only granted to those who are preforming specific tasks recognised by the government or for one person per household to go shopping or for two persons per household to go to a medical hospital or clinic. If you are in an area under a Stay at Home order you should contact the local ward administrators for details including any requirements that may be specific to that location.
Anyone wishing to travel outside of a township subject to a Stay at Home order will need permission from the State Government.
Since 13 May it has been compulsory for anyone going out in public to wear a facemask. Failure to wear one will result in a fine. This requirement is being enforced strictly and has led to the arrest of some offenders.
https://data.humdata.org/dataset/covid-19-data-visual-inputs
Photo by United Nations COVID-19 Response
The Covid-19 Pandemic
Facebook
TwitterAn OS was developed to assign COVID-19 disease severity using the Observational Medical Outcomes Partnership common data model within the National COVID Cohort Collaborative (N3C) data enclave. We then evaluated usefulness of the developed OS using heterogenous EHR data from January 2020 to October 2021 submitted to N3C by 63 healthcare organizations across the United States. Principal Components Analysis (PCA) was employed to characterize changes in disease severity among patients during the 28-day period following COVID-19 diagnosis.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Daily official UK Covid data. The data is available per country (England, Scotland, Wales and Northern Ireland) and for different regions in England. The different regions are split into two different files as part of the data is directly gathered by the NHS (National Health Service). The files that contain the word 'nhsregion' in their name, include data related to hospitals only, such as number of admissions or number of people in respirators. The files containing the word 'region' in their name, include the rest of the data, such as number of cases, number of vaccinated people or number of tests performed per day. The next paragraphs describe the columns for the different file types.
Files related to regions (word 'region' included in the file name) have the following columns: - "date": date in YYYY-MM-DD format - "area type": type of area covered in the file (region or nation) - "area name": name of area covered in the file (region or nation name) - "daily cases": new cases on a given date - "cum cases": cumulative cases - "new deaths 28days": new deaths within 28 days of a positive test - "cum deaths 28days": cumulative deaths within 28 days of a positive test - "new deaths_60days": new deaths within 60 days of a positive test - "cum deaths 60days": cumulative deaths within 60 days of a positive test - "new_first_episode": new first episodes by date - "cum_first_episode": cumulative first episodes by date - "new_reinfections": new reinfections by specimen data - "cum_reinfections": cumualtive reinfections by specimen data - "new_virus_test": new virus tests by date - "cum_virus_test": cumulative virus tests by date - "new_pcr_test": new PCR tests by date - "cum_pcr_test": cumulative PCR tests by date - "new_lfd_test": new LFD tests by date - "cum_lfd_test": cumulative LFD tests by date - "test_roll_pos_pct": percentage of unique case positivity by date rolling sum - "test_roll_people": unique people tested by date rolling sum - "new first dose": new people vaccinated with a first dose - "cum first dose": cumulative people vaccinated with a first dose - "new second dose": new people vaccinated with a first dose - "cum second dose": cumulative people vaccinated with a first dose - "new third dose": new people vaccinated with a booster or third dose - "cum third dose": cumulative people vaccinated with a booster or third dose
Files related to countries (England, Northern Ireland, Scotland and Wales) have the above columns and also: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
Files related to nhsregion (word 'nhsregion' included in the file name) have the following columns: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
It's worth noting that the dataset hasn't been cleaned and it needs cleaning. Also, different files have different null columns. This isn't an error in the dataset but the way different countries and regions report the data.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterThe use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with coronavirus disease 2019 (COVID-19) has raised great concerns. The effect of NSAIDs on the clinical status of COVID-19 remains in question. Therefore, we performed a post-hoc analysis from the ORCHID trial. Patients with COVID-19 from the ORCHID trial were categorized into two groups according to NSAID use. The 28-day mortality, hospitalized discharge, and safety outcomes with NSAIDs for patients with COVID-19 were analyzed. A total of 476 hospitalized patients with COVID-19 were included; 412 patients (86.5%) did not receive NSAIDs, while 64 patients (13.5%) took NSAIDs as regular home medication. Patients who took NSAIDs did not have a significant increase in the risk of 28-day mortality (fully adjusted: hazard ratio [HR]: 1.12, 95% CI: 0.52–2.42) in the Cox multivariate analysis. Moreover, NSAIDs did not decrease hospital discharge through 28 days (fully adjusted: HR: 1.02, 95% CI: 0.75–1.37). The results of a meta-analysis including 14 studies involving 48,788 patients with COVID-19 showed that the use of NSAIDs had a survival benefit (summary risk ratio [RR]: 0.70, 95% CI: 0.54–0.91) and decreased the risk of severe COVID-19 (summary: RR: 0.79, 95% CI: 0.71–0.88). In conclusion, the use of NSAIDs is not associated with worse clinical outcomes, including 28-day mortality or hospital discharge in American adult hospitalized patients with COVID-19. Based on current evidence, the use of NSAIDs is safe and should not be cautioned against during the COVID-19 pandemic. Ongoing trials should further assess in-hospital treatment with NSAIDs for patients with COVID-19.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains a weekly situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).
Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has collected the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. This comprehensive and systematic process was carried out on a daily basis until 14/12/2020. See the discontinued daily dataset: COVID-19 Coronavirus data - daily. ECDC’s decision to discontinue daily data collection is based on the fact that the daily number of cases reported or published by countries is frequently subject to retrospective corrections, delays in reporting and/or clustered reporting of data for several days. Therefore, the daily number of cases may not reflect the true number of cases at EU/EEA level at a given day of reporting. Consequently, day to day variations in the number of cases does not constitute a valid basis for policy decisions.
ECDC continues to monitor the situation. Every week between Monday and Wednesday, a team of epidemiologists screen up to 500 relevant sources to collect the latest figures for publication on Thursday. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.
ECDC receives regular updates from EU/EEA countries through the Early Warning and Response System (EWRS), The European Surveillance System (TESSy), the World Health Organization (WHO) and email exchanges with other international stakeholders. This information is complemented by screening up to 500 sources every day to collect COVID-19 figures from 196 countries. This includes websites of ministries of health (43% of the total number of sources), websites of public health institutes (9%), websites from other national authorities (ministries of social services and welfare, governments, prime minister cabinets, cabinets of ministries, websites on health statistics and official response teams) (6%), WHO websites and WHO situation reports (2%), and official dashboards and interactive maps from national and international institutions (10%). In addition, ECDC screens social media accounts maintained by national authorities on for example Twitter, Facebook, YouTube or Telegram accounts run by ministries of health (28%) and other official sources (e.g. official media outlets) (2%). Several media and social media sources are screened to gather additional information which can be validated with the official sources previously mentioned. Only cases and deaths reported by the national and regional competent authorities from the countries and territories listed are aggregated in our database.
Disclaimer: National updates are published at different times and in different time zones. This, and the time ECDC needs to process these data, might lead to discrepancies between the national numbers and the numbers published by ECDC. Users are advised to use all data with caution and awareness of their limitations. Data are subject to retrospective corrections; corrected datasets are released as soon as processing of updated national data has been completed.
If you reuse or enrich this dataset, please share it with us.
Facebook
TwitterTracking COVID-19 vaccination rates is crucial to understand the scale of protection against the virus, and how this is distributed across the global population.
A global, aggregated database on COVID-19 vaccination rates is essential to monitor progress, but it is unfortunately not yet available. This dataset provides the last weekly update of vaccination rates.
June 2021
Colums description: 1. iso_code: ISO 3166-1 alpha-3 – three-letter country codes 2. continent: Continent of the geographical location 3. location: Geographical location 4. date: Date of observation 5. total_cases: Total confirmed cases of COVID-19 6. new_cases: New confirmed cases of COVID-19 7. new_cases_smoothed: New confirmed cases of COVID-19 (7-day smoothed) 8. total_deaths: Total deaths attributed to COVID-19 9. new_deaths: New deaths attributed to COVID-19 10. new_deaths_smoothed: New deaths attributed to COVID-19 (7-day smoothed) 11. total_cases_per_million: Total confirmed cases of COVID-19 per 1,000,000 people 12. new_cases_per_million: New confirmed cases of COVID-19 per 1,000,000 people 13. new_cases_smoothed_per_million: New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people 14. total_deaths_per_million: Total deaths attributed to COVID-19 per 1,000,000 people 15. new_deaths_per_million: New deaths attributed to COVID-19 per 1,000,000 people 16. new_deaths_smoothed_per_million: New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people 17. reproduction_rate: Real-time estimate of the effective reproduction rate (R) of COVID-19. See http://trackingr-env.eba-9muars8y.us-east-2.elasticbeanstalk.com/FAQ 18. icu_patients: Number of COVID-19 patients in intensive care units (ICUs) on a given day 19. icu_patients_per_million: Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people 20. hosp_patients: Number of COVID-19 patients in hospital on a given day 21. hosp_patients_per_million: Number of COVID-19 patients in hospital on a given day per 1,000,000 people 22. weekly_icu_admissions: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week 23. weekly_icu_admissions_per_million: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people 24. weekly_hosp_admissions: Number of COVID-19 patients newly admitted to hospitals in a given week 25. weekly_hosp_admissions_per_million: Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people 26. total_tests: Total tests for COVID-19 27. new_tests: New tests for COVID-19 28. new_tests_smoothed: New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window 29. total_tests_per_thousand: Total tests for COVID-19 per 1,000 people 30. new_tests_per_thousand: New tests for COVID-19 per 1,000 people 31. new_tests_smoothed_per_thousand: New tests for COVID-19 (7-day smoothed) per 1,000 people 32. tests_per_case: Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate) 33. positive_rate: The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case) 34. tests_units: Units used by the location to report its testing data 35. total_vaccinations: Number of COVID-19 vaccination doses administered 36. total_vaccinations_per_hundred: Number of COVID-19 vaccination doses administered per 100 people 37. stringency_index: Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response) 38. population: Population in 2020 39. population_density: Number of people divided by land area, measured in square kilometers, most recent year available 40. median_age: Median age of the population, UN projection for 2020 41. aged_65_older: Share of the population that is 65 years and older, most recent year available 42. aged_70_older: Share of the population that is 70 years and older in 2015 43. gdp_per_capita: Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available 44. extreme_poverty: Share of the population living in extreme poverty, most recent year available since 2010 45. cardiovasc_death_rate: Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people) 46. diabetes_prevalence: Diabetes prevalence (% of population aged 20 to 79) in 2017 47. female...
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
This report shows data completeness information on data submitted by hospitals for the previous week, from Friday to Thursday. The U.S. Department of Health and Human Services requires all hospitals licensed to provide 24-hour care to report certain data necessary to the all-of-America COVID-19 response. The report includes the following information for each hospital:
Facebook
TwitterYesterday, hopes soared that an end to the pandemic may finally be in sight after an interim analysis showed Pfizer/BioNTech's vaccine candidate provided 90 percent protection in trials. It performed much better than experts had hoped for and manufacturing has already started with Pfizer stating it hopes to supply 50 million doses in 2020 and 1.3 billion doses in 2021. Pfizer chairman and chief executive Albert Bourla said that “Today is a great day for science and humanity. The first set of results from our phase 3 Covid-19 vaccine trial provides the initial evidence of our vaccine’s ability to prevent Covid-19,” adding that “we are reaching this critical milestone in our vaccine development programme at a time when the world needs it most with infection rates setting new records, hospitals nearing over-capacity and economies struggling to reopen.”
The rush to develop a Covid-19 vaccine has gained traction in recent months and a representative from the Russian health ministry also claimed the country's Sputnik V is up to 90 percent effective. Great hopes have also been pinned on a coronavirus vaccine candidate being developed by the University of Oxford that successfully triggered a strong immune response in trials involving 1,077 people. Scientific journal The Lancet had published hugely promising results of Phase I/II trials in July for the University of Oxford vaccine and it provoked a T cell response within 14 days of vaccination and an antibody response within 28 days.
https://www.statista.com/chart/22325/number-of-covid-19-vaccine-candidates/
Vaccines generally take years to develop but candidates are now being developed at an unprecedented pace. Nearly 200 Covid-19 vaccine candidates are now listed by the World Health Organization, according to The Guardian and several are already in advanced testing. The data shows that the bulk of candidates are in the pre-clinical stage of testing where the vaccine is given to animals to see if it triggers an immune response. 39 are in phase I trials where it is administered to a small group of people to determine whether it is safe. 18 are in phase II where the candidate is given to hundreds of people to evaluate further safety issues as well as dosage. The last stage is Phase III, of which 11 candidates are currently in, and it involves thousands of people receiving the vaccine to eliminate any final safety fears, particularly considering side effects.
Niall McCarthy, Data Journalist. https://www.statista.com/chart/22325/number-of-covid-19-vaccine-candidates/
Covid-19
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Independent predictors of 28-day mortality, as identifies with logistic regression.
Facebook
TwitterIntroductionThe incidence of long COVID is substantial, even in people with mild to moderate acute COVID-19. The role of early viral kinetics in the subsequent development of long COVID is largely unknown, especially in individuals who were not hospitalized for acute COVID-19.MethodsSeventy-three non-hospitalized adult participants were enrolled within approximately 48 hours of their first positive SARS-CoV-2 RT-PCR test, and mid-turbinate nasal and saliva samples were collected up to 9 times within the first 45 days after enrollment. Samples were assayed for SARS-CoV-2 using RT-PCR and additional SARS-CoV-2 test results were abstracted from the clinical record. Each participant indicated the presence and severity of 49 long COVID symptoms at 1-, 3-, 6-, 12-, and 18-months post-COVID-19 diagnosis. Time from acute COVID-19 illness onset to SARS-CoV-2 RNA clearance greater or less than 28 days was tested for association with the presence or absence of each of 49 long COVID symptoms at 90+ days from acute COVID-19 symptom onset.ResultsSelf-reported brain fog and muscle pain at 90+ days after acute COVID-19 onset were negatively associated with viral RNA clearance within 28 days of acute COVID-19 onset with adjustment for age, sex, BMI ≥ 25, and COVID vaccination status prior to COVID-19 (brain fog: aRR 0.46, 95% CI 0.22-0.95; muscle pain: aRR 0.28, 95% CI 0.08-0.94). Participants reporting higher severity brain fog or muscle pain at 90+ days after acute COVID-19 onset were less likely to have cleared SARS-CoV-2 RNA within 28 days. The acute viral RNA decay trajectories of participants who did and did not later go on to experience brain fog 90+ days after acute COVID-19 onset were distinct.DiscussionThis work indicates that at least two long COVID symptoms - brain fog and muscle pain – at 90+ days from acute COVID-19 onset are specifically associated with prolonged time to clearance of SARS-CoV-2 RNA from the upper respiratory tract during acute COVID-19. This finding provides evidence that delayed immune clearance of SARS-CoV-2 antigen or greater amount or duration of viral antigen burden in the upper respiratory tract during acute COVID-19 are directly linked to long COVID. This work suggests that host-pathogen interactions during the first few weeks after acute COVID-19 onset have an impact on long COVID risk months later.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional data on excess mortality (excluding COVID-19) during heat-periods in the 65 years and over age group estimates in England, including the estimated number of deaths where the death occurred within 28 days of a positive COVID-19 result and the mean central England temperature.
Facebook
TwitterIncidences per 28 days per million persons of cerebral venous sinus thrombosis and thrombocytopenia during the 28-day risk periods after COVID-19 vaccinations and during the unexposed time preceding the vaccinations.
Facebook
TwitterReports of City of Bloomington employees with positive COVID-19 viral test results by department since March 28, 2020. The dataset also includes results from the municipal corporations of the Bloomington Housing Authority, Bloomington Transit, and the City of Bloomington Utilities. Note that results listed as "City Hall" include results from multiple departments whose employees work only at City Hall. These include: Community and Family Resources, Controller, Economic and Sustainable Development, Housing and Neighborhood Development, Human Resources, Information and Technology Services, Mayor's Office, Parks administration, and Public Works administration.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths, based on a 7-day rolling sum of deaths recorded where a diagnosis of Covid-19 within 28 days of the date of death has been recorded.Please note automatic updates to this dataset was discontinued on 3rd July 2023.