70 datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. Coronavirus (Covid-19) Data of United States (USA)

    • kaggle.com
    zip
    Updated Nov 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Hanson (2020). Coronavirus (Covid-19) Data of United States (USA) [Dataset]. https://www.kaggle.com/joelhanson/coronavirus-covid19-data-in-the-united-states
    Explore at:
    zip(7506633 bytes)Available download formats
    Dataset updated
    Nov 5, 2020
    Authors
    Joel Hanson
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Coronavirus (COVID-19) Data in the United States

    [ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

    United States Data

    Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.

    Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.

    Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.

    Download all the data or clone this repository by clicking the green "Clone or download" button above.

    State-Level Data

    State-level data can be found in the states.csv file. (Raw CSV file here.)

    date,state,fips,cases,deaths
    2020-01-21,Washington,53,1,0
    ...
    

    County-Level Data

    County-level data can be found in the counties.csv file. (Raw CSV file here.)

    date,county,state,fips,cases,deaths
    2020-01-21,Snohomish,Washington,53061,1,0
    ...
    

    In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.

    Methodology and Definitions

    The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.

    It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.

    When the information is available, we count patients where they are being treated, not necessarily where they live.

    In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.

    For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add information about their locations later, once it became available.

    • Confirmed Cases

    Confirmed cases are patients who test positive for the coronavirus. We consider a case confirmed when it is reported by a federal, state, territorial or local government agency.

    • Dates

    For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.

    • Counties

    In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances, the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.

    Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.

    • “Unknown” Counties

    Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.

    Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.

    Geographic Exceptions

    • New York City

    All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.

    • Kansas City, Mo.

    Four counties (Cass, Clay, Jackson, and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their line.

    • Alameda, Calif.

    Counts for Alameda County include cases and deaths from Berkeley and the Grand Princess cruise ship.

    • Chicago

    All cases and deaths for Chicago are reported as part of Cook County.

    License and Attribution

    In general, we are making this data publicly available for broad, noncommercial public use including by medical and public health researchers, policymakers, analysts and local news media.

    If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”

    If you use it in an online presentation, we would appreciate it if you would link to our U.S. tracking page at https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.

    If you use this data, please let us know at covid-data@nytimes.com and indicate if you would be willing to talk to a reporter about your research.

    See our LICENSE for the full terms of use for this data.

    This license is co-extensive with the Creative Commons Attribution-NonCommercial 4.0 International license, and licensees should refer to that license (CC BY-NC) if they have questions about the scope of the license.

    Contact Us

    If you have questions about the data or licensing conditions, please contact us at:

    covid-data@nytimes.com

    Contributors

    Mitch Smith, Karen Yourish, Sarah Almukhtar, Keith Collins, Danielle Ivory, and Amy Harmon have been leading our U.S. data collection efforts.

    Data has also been compiled by Jordan Allen, Jeff Arnold, Aliza Aufrichtig, Mike Baker, Robin Berjon, Matthew Bloch, Nicholas Bogel-Burroughs, Maddie Burakoff, Christopher Calabrese, Andrew Chavez, Robert Chiarito, Carmen Cincotti, Alastair Coote, Matt Craig, John Eligon, Tiff Fehr, Andrew Fischer, Matt Furber, Rich Harris, Lauryn Higgins, Jake Holland, Will Houp, Jon Huang, Danya Issawi, Jacob LaGesse, Hugh Mandeville, Patricia Mazzei, Allison McCann, Jesse McKinley, Miles McKinley, Sarah Mervosh, Andrea Michelson, Blacki Migliozzi, Steven Moity, Richard A. Oppel Jr., Jugal K. Patel, Nina Pavlich, Azi Paybarah, Sean Plambeck, Carrie Price, Scott Reinhard, Thomas Rivas, Michael Robles, Alison Saldanha, Alex Schwartz, Libby Seline, Shelly Seroussi, Rachel Shorey, Anjali Singhvi, Charlie Smart, Ben Smithgall, Steven Speicher, Michael Strickland, Albert Sun, Thu Trinh, Tracey Tully, Maura Turcotte, Miles Watkins, Jeremy White, Josh Williams, and Jin Wu.

    Context

    There's a story behind every dataset and here's your opportunity to share yours.# Coronavirus (Covid-19) Data in the United States

    [ U.S. State-Level Data ([Raw

  3. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • opendatalab.com
    • +5more
    csv, xlsx, xml
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  4. d

    Potential Coronavirus (COVID-19) symptoms reported through NHS Pathways and...

    • digital.nhs.uk
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Potential Coronavirus (COVID-19) symptoms reported through NHS Pathways and 111 online, Week Ending 15th May 2022 [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/mi-potential-covid-19-symptoms-reported-through-nhs-pathways-and-111-online
    Explore at:
    Dataset updated
    May 16, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    May 9, 2022 - May 15, 2022
    Description

    Data published on potential COVID-19 symptoms reported through NHS Pathways and 111 online shows the total number of NHS Pathways triages through 111 and 999, and online assessments in 111 online which have received a potential COVID-19 final disposition. This data is based on potential COVID-19 symptoms reported by members of the public to NHS Pathways through NHS 111 or 999 and 111 online, and is not based on the outcomes of tests for coronavirus. It is not a count of people.

  5. A

    ‘United States COVID-19 Cases and Deaths by State over Time’ analyzed by...

    • analyst-2.ai
    Updated Jul 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘United States COVID-19 Cases and Deaths by State over Time’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-united-states-covid-19-cases-and-deaths-by-state-over-time-17ec/latest
    Explore at:
    Dataset updated
    Jul 15, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘United States COVID-19 Cases and Deaths by State over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/94385ab5-449a-41ff-8253-15a9f6283539 on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    CDC reports aggregate counts of COVID-19 cases and death numbers daily online. Data on the COVID-19 website and CDC’s COVID Data Tracker are based on these most recent numbers reported by states, territories, and other jurisdictions. This data set of “United States COVID-19 Cases and Deaths by State over Time” combines this information. However, data are dependent on jurisdictions’ timely and accurate reporting.

    Separately, CDC also regularly reports provisional death certificate data from the National Vital Statistics System (NVSS) on data.cdc.gov. Details are described on the NCHS website. Reporting the number of deaths by using death certificates ultimately provides more complete information but is a longer process; therefore, these numbers will be less than the death counts on the COVID-19 website.

    Accuracy of Data
    CDC tracks COVID-19 illnesses, hospitalizations, and deaths to track trends, detect outbreaks, and monitor whether public health measures are working. However, counting exact numbers of COVID-19 cases is not possible. COVID-19 can cause mild illness, symptoms might not appear immediately, there are delays in reporting and testing, not everyone who is infected gets tested or seeks medical care, and there are differences in how completely states and territories report their cases.

    COVID-19 is one of about 120 diseases or conditions health departments voluntarily report to CDC. State, local, and territorial public health departments verify and report cases to CDC. When there are differences between numbers of cases reported by CDC versus by health departments, data reported by health departments should be considered the most up to date. Health departments may update case data over time when they receive more complete and accurate information. The number of new cases reported each day fluctuates. There is generally less reporting on the weekends and holidays.

    CDC reports death data on three other sections of the website: U.S. Cases & Deaths, COVID Data Tracker, and NCHS Provisional Death Counts. The U.S. Cases and Deaths webpages and COVID Data Tracker get their information from the same source (total case counts); however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed. Because not all jurisdictions report counts daily, counts may increase at different intervals.

    Confirmed & Probable Counts
    As of April 14, 2020, CDC case counts and death counts include both confirmed and probable cases and deaths. This change was made to reflect an interim COVID-19 position statement issued by the Council for State and Territorial Epidemiologists on April 5, 2020. The position statement included a case definition and made COVID-19 a nationally notifiable disease. Nationally notifiable disease cases are voluntarily reported to CDC by jurisdictions. Confirmed and probable case definition criteria are described here: https://wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/. Not all jurisdictions report probable cases and deaths to CDC. When not available to CDC, it is noted as N/A. Please note that jurisdiction

    --- Original source retains full ownership of the source dataset ---

  6. c

    The COVID Tracking Project

    • covidtracking.com
    google sheets
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project [Dataset]. https://covidtracking.com/
    Explore at:
    google sheetsAvailable download formats
    Description

    The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.

    Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.

    From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.

  7. USAFacts US Coronavirus Database

    • console.cloud.google.com
    Updated Oct 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:USAFacts (2020). USAFacts US Coronavirus Database [Dataset]. https://console.cloud.google.com/marketplace/product/usafacts-public-data/covid19-us-cases
    Explore at:
    Dataset updated
    Oct 22, 2020
    Dataset provided by
    USAFactshttps://usafacts.org/
    Googlehttp://google.com/
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This data from USAFacts provides US COVID-19 case and death counts by state and county. This data is sourced from the CDC, and state and local health agencies. For more information, see the USAFacts site on the Coronavirus. Interactive data visualizations are also available via USAFacts. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate.

  8. Media consumption increase due to the coronavirus worldwide 2020, by country...

    • statista.com
    Updated Jun 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Media consumption increase due to the coronavirus worldwide 2020, by country [Dataset]. https://www.statista.com/statistics/1106766/media-consumption-growth-coronavirus-worldwide-by-country/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 16, 2020 - Mar 20, 2020
    Area covered
    Worldwide
    Description

    The coronavirus outbreak has caused media consumption to increase in countries across the globe, with book reading and audiobook listening up by ** percent, social media usage seeing an increase of ** percent, and news consumption rising by ** percent. Some consumers were more engaged with the news than others, with the share of Australians and French respondents who significantly increased their news consumption standing at around ***** to *** percent lower than the global total. Perhaps unsurprisingly, comparatively few people spent more time reading newspapers and magazines or listening to the radio (all media pastimes which have waned in popularity in recent years) but time spent on social media and video streaming services grew substantially in some countries, particularly the Philippines. Meanwhile, in nearby Singapore social media usage time grew by just ** percent.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Fact and Figures page.

  9. COVID-19 Trends in Each Country

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). COVID-19 Trends in Each Country [Dataset]. https://data.amerigeoss.org/dataset/covid-19-trends-in-each-country
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jul 29, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    COVID-19 Trends Methodology
    Our goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.


    6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.
    6/22/2020 - Added Executive Summary and Subsequent Outbreaks sections
    Revisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.
    Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.
    Correction on 6/1/2020
    Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020.
    Revisions added on 4/30/2020 are highlighted.
    Revisions added on 4/23/2020 are highlighted.

    Executive Summary
    COVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties.
    The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.

    We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.

    Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.

    Reasons for undertaking this work in March of 2020:
    1. The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.
    2. The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.
    3. The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:
    • U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online.
    • Initial older guidance was also obtained online.
    Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws.
    Thus, the formula used to compute an estimate of active cases is:

    Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths.
    <br

  10. A Twitter Dataset of 70+ million tweets related to COVID-19

    • zenodo.org
    csv, tsv, zip
    Updated Apr 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juan M. Banda; Juan M. Banda; Ramya Tekumalla; Ramya Tekumalla; Gerardo Chowell; Gerardo Chowell (2023). A Twitter Dataset of 70+ million tweets related to COVID-19 [Dataset]. http://doi.org/10.5281/zenodo.3732460
    Explore at:
    csv, tsv, zipAvailable download formats
    Dataset updated
    Apr 17, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juan M. Banda; Juan M. Banda; Ramya Tekumalla; Ramya Tekumalla; Gerardo Chowell; Gerardo Chowell
    Description

    Due to the relevance of the COVID-19 global pandemic, we are releasing our dataset of tweets acquired from the Twitter Stream related to COVID-19 chatter. The first 9 weeks of data (from January 1st, 2020 to March 11th, 2020) contain very low tweet counts as we filtered other data we were collecting for other research purposes, however, one can see the dramatic increase as the awareness for the virus spread. Dedicated data gathering started from March 11th to March 29th which yielded over 4 million tweets a day.

    The data collected from the stream captures all languages, but the higher prevalence are: English, Spanish, and French. We release all tweets and retweets on the full_dataset.tsv file (70,569,368 unique tweets), and a cleaned version with no retweets on the full_dataset-clean.tsv file (13,535,912 unique tweets). There are several practical reasons for us to leave the retweets, tracing important tweets and their dissemination is one of them. For NLP tasks we provide the top 1000 frequent terms in frequent_terms.csv, the top 1000 bigrams in frequent_bigrams.csv, and the top 1000 trigrams in frequent_trigrams.csv. Some general statistics per day are included for both datasets in the statistics-full_dataset.tsv and statistics-full_dataset-clean.tsv files.

    More details can be found (and will be updated faster at: https://github.com/thepanacealab/covid19_twitter)

    As always, the tweets distributed here are only tweet identifiers (with date and time added) due to the terms and conditions of Twitter to re-distribute Twitter data. The need to be hydrated to be used.

  11. N

    MIDAS Online Portal for COVID-19 Modeling Research

    • datacatalog.med.nyu.edu
    Updated Sep 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center (2022). MIDAS Online Portal for COVID-19 Modeling Research [Dataset]. https://datacatalog.med.nyu.edu/dataset/10402
    Explore at:
    Dataset updated
    Sep 26, 2022
    Dataset authored and provided by
    MIDAS Coordination Center
    Time period covered
    Jan 1, 2020 - Present
    Area covered
    International
    Description

    The MIDAS (Models of Infectious Disease Agent Study) Online Portal for COVID-19 Modeling Research is a collection of publicly-available COVID-19 resources to support dashboard monitoring, data processing, modeling, and visualization efforts. Collections listed in the portal include case counts and case line lists with documented metadata, peer-reviewed and non-peer-reviewed parameter estimates, and software created by MIDAS community members. Datasets and parameter estimates are maintained and stored in the MIDAS Github repository; software is hosted by their respective creators on Github or a personal webpage.

  12. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  13. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  14. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/widgets/hree-nys2
    Explore at:
    application/rdfxml, csv, application/rssxml, json, xml, tsvAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  15. m

    COVID-19 reporting

    • mass.gov
    Updated Oct 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2022). COVID-19 reporting [Dataset]. https://www.mass.gov/info-details/covid-19-reporting
    Explore at:
    Dataset updated
    Oct 21, 2022
    Dataset provided by
    Executive Office of Health and Human Services
    Department of Public Health
    Area covered
    Massachusetts
    Description

    The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.

  16. U.S. online medication purchases probability due to coronavirus home...

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. online medication purchases probability due to coronavirus home isolation 2020 [Dataset]. https://www.statista.com/statistics/1106468/likelihood-online-medication-purchase-due-to-coronavirus-home-usa/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 13, 2020
    Area covered
    United States
    Description

    During a March 2020 survey of consumers in the United States, **** percent of respondents stated that if confined to their homes during the coronavirus, they were likely to purchase prescriptions and over the counter medicines online. OTC healthcare sales have increased significantly in the wake of the coronavirus pandemic.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  17. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  18. A Twitter Dataset of 40+ million tweets related to COVID-19

    • zenodo.org
    • explore.openaire.eu
    csv, tsv
    Updated Apr 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juan M. Banda; Juan M. Banda; Ramya Tekumalla; Ramya Tekumalla (2023). A Twitter Dataset of 40+ million tweets related to COVID-19 [Dataset]. http://doi.org/10.5281/zenodo.3723940
    Explore at:
    tsv, csvAvailable download formats
    Dataset updated
    Apr 17, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juan M. Banda; Juan M. Banda; Ramya Tekumalla; Ramya Tekumalla
    Description

    Due to the relevance of the COVID-19 global pandemic, we are releasing our dataset of tweets acquired from the Twitter Stream related to COVID-19 chatter. The first 9 weeks of data (from January 1st, 2020 to March 11th, 2020) contain very low tweet counts as we filtered other data we were collecting for other research purposes, however, one can see the dramatic increase as the awareness for the virus spread. Dedicated data gathering started from March 11th to March 22nd which yielded over 4 million tweets a day.

    The data collected from the stream captures all languages, but the higher prevalence are: English, Spanish, and French. We release all tweets and retweets on the full_dataset.tsv file (40,823,816 unique tweets), and a cleaned version with no retweets on the full_dataset-clean.tsv file (7,479,940 unique tweets). There are several practical reasons for us to leave the retweets, tracing important tweets and their dissemination is one of them. For NLP tasks we provide the top 1000 frequent terms in frequent_terms.csv, the top 1000 bigrams in frequent_bigrams.csv, and the top 1000 trigrams in frequent_trigrams.csv. Some general statistics per day are included for both datasets in the statistics-full_dataset.tsv and statistics-full_dataset-clean.tsv files.

    More details can be found (and will be updated faster at: https://github.com/thepanacealab/covid19_twitter)

    As always, the tweets distributed here are only tweet identifiers (with date and time added) due to the terms and conditions of Twitter to re-distribute Twitter data. The need to be hydrated to be used.

  19. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +4more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset authored and provided by
    Googlehttp://google.com/
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  20. a

    COVID-19 Trends in Each Country-Heb

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • hub.arcgis.com
    Updated Apr 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mory (2020). COVID-19 Trends in Each Country-Heb [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/f8b6e9872cac47aaa33b123d6e2de8d4
    Explore at:
    Dataset updated
    Apr 16, 2020
    Dataset authored and provided by
    mory
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. 100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent one third of case days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 63 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 6-21 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 6 to 21 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 6-21 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 6-21 days and less than past 2 days indicates slight positive trend, but likely still within peak trend timeframe.Past five days is less than the past 6-21 days. This means a downward trend. This would be an important trend for any administrative area in an epidemic trend that the rate of spread is slowing.If less than the past 2 days, but not the last 6-21 days, this is still positive, but is not indicating a passage out of the peak timeframe of the daily new cases curve.Past 5 days has only one or two new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 6 to 21 days. Most recent 6-21 days: Represents the full tail of the curve and provides context for the past 2- and 5-day trends.If this is greater than both the 2- and 5-day trends, then a short-term downward trend has begun. Mean of Recent Tail NCD in the context of the Mean of All NCD, and raw counts of cases:Mean of Recent NCD is less than 0.5 cases per 100,000 = high level of controlMean of Recent NCD is less than 1.0 and fewer than 30 cases indicate continued emergent trend.3. Mean of Recent NCD is less than 1.0 and greater than 30 cases indicate a change from emergent to spreading trend.Mean of All NCD less than 2.0 per 100,000, and areas that have been in epidemic trends have Mean of Recent NCD of less than 5.0 per 100,000 is a significant indicator of changing trends from epidemic to spreading, now going in the direction of controlled trend.Similarly, in the context of Mean of All NCD greater than 2.0

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu