Facebook
TwitterBased on projections made on December 17, the number of deaths due to COVID-19 in the United States by the end of March 2021 could range from 505,894 to 713,674 depending on the scenario. The best case scenario being 95 percent mask usage universally and the worst case being continued easing of social distancing mandates. This statistic shows the projected number of deaths due to COVID-19 in the U.S. from December 1, 2020 to March 31, 2021 based on three different scenarios, as of December 17.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe dashboard is updated each Friday. Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for COVID-19 in California. Test positivity for a given week is calculated by dividing the number of positive COVID-19 results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday. Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset (https://dof.ca.gov/forecasting/demographics/projections/) provided by the State of California Department of Finance. Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html). Weekly hospitalization data are defined as Sunday through Saturday. Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complexity of COVID-19 and variations in control measures and containment efforts in different countries have caused difficulties in the prediction and modeling of the COVID-19 pandemic. We attempted to predict the scale of the latter half of the pandemic based on real data using the ratio between the early and latter halves from countries where the pandemic is largely over. We collected daily pandemic data from China, South Korea, and Switzerland and subtracted the ratio of pandemic days before and after the disease apex day of COVID-19. We obtained the ratio of pandemic data and created multiple regression models for the relationship between before and after the apex day. We then tested our models using data from the first wave of the disease from 14 countries in Europe and the US. We then tested the models using data from these countries from the entire pandemic up to March 30, 2021. Results indicate that the actual number of cases from these countries during the first wave mostly fall in the predicted ranges of liniar regression, excepting Spain and Russia. Similarly, the actual deaths in these countries mostly fall into the range of predicted data. Using the accumulated data up to the day of apex and total accumulated data up to March 30, 2021, the data of case numbers in these countries are falling into the range of predicted data, except for data from Brazil. The actual number of deaths in all the countries are at or below the predicted data. In conclusion, a linear regression model built with real data from countries or regions from early pandemics can predict pandemic scales of the countries where the pandemics occur late. Such a prediction with a high degree of accuracy provides valuable information for governments and the public.
Facebook
TwitterThis dataset contains forecasted weekly numbers of reported COVID-19 incident cases, incident deaths, and cumulative deaths in the United States, previously reported on COVID Data Tracker (https://covid.cdc.gov/covid-data-tracker/#datatracker-home). These forecasts were generated using mathematical models by CDC partners in the COVID-19 Forecast Hub (https://covid19forecasthub.org/doc/ensemble/). A CDC ensemble model was produced every week using the submitted models from that week at the national, and state/territory level.
This dataset is intended to mirror the observed and forecasted data, previously available for download on the CDC’s COVID Data Tracker. Mortality forecasts for both new and cumulative reported COVID-19 deaths were produced at the state and territory level and national level. Forecasts of new reported COVID-19 cases were produced at the county, state/territory, and national level. Please note that this dataset is not complete for every model, date, location or combination thereof. Specifically, county level submissions for COVID-19 incident cases were accepted, but not required, and are missing or incomplete for many models and dates. State and territory-level forecasts are more complete, but not all models submitted forecasts for all locations, dates, and targets (new reported deaths, new reported cases, and cumulative reported deaths). Forecasts for COVID-19 incident cases were discontinued in February 2022. Forecasts for COVID-19 cumulative and incident deaths were discontinued in March 2023.
Facebook
TwitterCOVID-19 mortality forecasting models provide critical information about the trajectory of the pandemic, which is used by policymakers and public health officials to guide decision-making. However, thousands of published COVID-19 mortality forecasts now exist, many with their own unique methods, assumptions, format, and visualization. As a result, it is difficult to compare models and understand under which circumstances a model performs best. Here, we describe the construction and usability of covidcompare.io, a web tool built to compare numerous forecasts and offer insight into how each has performed over the course of the pandemic. From its launch in December 2020 to June 2021, we have seen 4,600 unique visitors from 85 countries. A study conducted with public health professionals showed high usability overall as formally assessed using a Post-Study System Usability Questionnaire (PSSUQ). We find that covidcompare.io is an impactful tool for the comparison of international COVID-19 mortality forecasting models.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset contains observed and 4 weeks forecast new and total weekly COVID-19 deaths at national and state level until March 9, 2023. Forecasting teams predict numbers of deaths using different types of data (e.g., COVID-19 data, demographic data, mobility data), methods, and estimates of the impacts of interventions (e.g., social distancing, use of face coverings).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
IHME has produced forecasts which show hospital bed use, need for intensive care beds, and ventilator use due to COVID-19 based on projected deaths for all 50 U.S. states. These projections are produced by models based on observed death rates from COVID-19 and include uncertainty intervals.
They incorporate information about social distancing and other protective measures and are being updated daily with new data. These forecasts were developed in order to provide hospitals, policymakers, and the public with crucial information about how expected need aligns with existing resources so that cities and states can best prepare.
All the column descriptors and details are attached in the PDF.
Institute for Health Metrics and Evaluation (IHME). United States COVID-19 Hospital Needs and Death Projections. Seattle, United States of America: Institute for Health Metrics and Evaluation (IHME), University of Washington, 2020
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was created by Umut Toygar Göz
Released under Attribution 4.0 International (CC BY 4.0)
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Public Health Agency of Canada (PHAC) released new modelling projections of the number of opioid-related deaths that may occur over the course of the coming months. The results of the model suggest that, under some scenarios, the number of opioid-related deaths may remain high or may even increase through to December 31, 2021.
Facebook
Twitter***Is there a decision tree for covid19 possible with these datasets ***validation demonstrates limited clinical utility of the interpretable mortality prediction model for patients with COVID-19
https://github.com/HAIRLAB/Pre_Surv_COVID_19/blob/master/response/EDA.ipynb The sudden increase of COVID-19 cases is putting a high pressure on health-care services worldwide. At the current stage, fast, accurate and early clinical assessment of the disease severity is vital. To support decision making and logistical planning in healthcare systems, this study leverages a database of blood samples from 485 infected patients in the region of Wuhan, China to identify crucial predictive biomarkers of disease mortality. For this purpose, machine learning tools selected three biomarkers that predict the mortality of individual patients with more than 90% accuracy: lactic dehydrogenase (LDH), lymphocyte and high-sensitivity C-reactive protein (hs-CRP). In particular, relatively high levels of LDH alone seem to play a crucial role in distinguishing the vast majority of cases that require immediate medical attention. This finding is consistent with current medical knowledge that high LDH levels are associated with tissue breakdown occurring in various diseases, including pulmonary disorders such as pneumonia. Overall, this paper suggests a simple and operable decision rule to quickly predict patients at the highest risk, allowing them to be prioritised and potentially reducing the mortality rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"
cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".
These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".
40-lifetables.csv
Life table statistics 2015 through 2021 by sex and region with uncertainty quantiles based on Poisson replication of death counts.
30-lt_input.csv
Life table input data.
Deaths
Population
COVID deaths
External life expectancy estimates
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
San Marino recorded 125 Coronavirus Deaths since the epidemic began, according to the World Health Organization (WHO). In addition, San Marino reported 24247 Coronavirus Cases. This dataset provides - San Marino Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.
The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.
The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 266 daily time series that represent the COVID-19 deaths in a set of countries and states from 22/01/2020 to 20/08/2020. It was extracted from the Johns Hopkins repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report.
The report is updated each Friday.
Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week.
Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis.
Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.
Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html).
CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians.
Weekly hospitalization data are defined as Sunday through Saturday.
Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.
Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.
Facebook
TwitterObjectiveWe developed and validated a prediction model based on individuals' risk profiles to predict the severity of lung involvement and death in patients hospitalized with coronavirus disease 2019 (COVID-19) infection.MethodsIn this retrospective study, we studied hospitalized COVID-19 patients with data on chest CT scans performed during hospital stay (February 2020-April 2021) in a training dataset (TD) (n = 2,251) and an external validation dataset (eVD) (n = 993). We used the most relevant demographical, clinical, and laboratory variables (n = 25) as potential predictors of COVID-19-related outcomes. The primary and secondary endpoints were the severity of lung involvement quantified as mild (≤25%), moderate (26–50%), severe (>50%), and in-hospital death, respectively. We applied random forest (RF) classifier, a machine learning technique, and multivariable logistic regression analysis to study our objectives.ResultsIn the TD and the eVD, respectively, the mean [standard deviation (SD)] age was 57.9 (18.0) and 52.4 (17.6) years; patients with severe lung involvement [n (%):185 (8.2) and 116 (11.7)] were significantly older [mean (SD) age: 64.2 (16.9), and 56.2 (18.9)] than the other two groups (mild and moderate). The mortality rate was higher in patients with severe (64.9 and 38.8%) compared to moderate (5.5 and 12.4%) and mild (2.3 and 7.1%) lung involvement. The RF analysis showed age, C reactive protein (CRP) levels, and duration of hospitalizations as the three most important predictors of lung involvement severity at the time of the first CT examination. Multivariable logistic regression analysis showed a significant strong association between the extent of the severity of lung involvement (continuous variable) and death; adjusted odds ratio (OR): 9.3; 95% CI: 7.1–12.1 in the TD and 2.6 (1.8–3.5) in the eVD.ConclusionIn hospitalized patients with COVID-19, the severity of lung involvement is a strong predictor of death. Age, CRP levels, and duration of hospitalizations are the most important predictors of severe lung involvement. A simple prediction model based on available clinical and imaging data provides a validated tool that predicts the severity of lung involvement and death probability among hospitalized patients with COVID-19.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
SPI-M-O consensus and individual model medium term projections created between October 2020 and the end of January 2021 for daily number of COVID-19 patients admitted to hospital, and deaths within 28 days of positive test by date of death, within England and English regions.
Facebook
TwitterCOVID-19 is a disease caused by the novel Coronavirus SARS-CoV-2 causing an acute respiratory disease that can eventually lead to severe acute respiratory syndrome (SARS). An exacerbated inflammatory response is characteristic of SARS-CoV-2 infection, which leads to a cytokine release syndrome also known as cytokine storm associated with the severity of the disease. Considering the importance of this event in the immunopathology of COVID-19, this study analyses cytokine levels of hospitalized patients to identify cytokine profiles associated with severity and mortality. Using a machine learning approach, 3 clusters of COVID-19 hospitalized patients were created based on their cytokine profile. Significant differences in the mortality rate were found among the clusters, associated to different CXCL10/IL-38 ratio. The balance of a CXCL10 induced inflammation with an appropriate immune regulation mediated by the anti-inflammatory cytokine IL-38 appears to generate the adequate immune context to overrule SARS-CoV-2 infection without creating a harmful inflammatory reaction. This study supports the concept that analyzing a single cytokine is insufficient to determine the outcome of a complex disease such as COVID-19, and different strategies incorporating bioinformatic analyses considering a broader immune profile represent a more robust alternative to predict the outcome of hospitalized patients with SARS-CoV-2 infection.
Facebook
TwitterOur primary objective is to commit our data and ideas into code so that we can share these ideas with true Data Scientists to be used to better understand this pandemic. Our current model uses the most current data available to create a predictive these models by country/region to estimate the maximum of Confirmed Cases by country/region and create reasonable a timeline to go with it.
Most of us are familiar with the data. China (mainly Hubei), was at the epicenter of this pandemic starting around January 22, 2020, and from there on to Europe and then around the world. Since the far east is more mature in this situation, we are already seeing certain areas flatten out in their cases of COVID; namely Hubei, China and South Korea. Other than that most countries are still in the growth stage of their development. However, from Hubei and South Korea we were able to fit regression curves to these data. Of noticeable importance was a version of the Sigmoid curve-fit equation as shown below. Yes, there are other equations that had better fits (r2); however, the Sigmoid equation has meaningful fit parameters that stand for something to us the users.
We have studied and openly used code from covid-19-digging-a-bit-deeper and COVID Global Forecast: SIR model + ML regressions as go-by's in the preparation of this notebook. These were both great notebooks that allowed this non-programmer to at least share some ideas in the spirit of collaboration.
These COVID data have certain characteristics by country/region as pointed out by Tomas Pueyo in the Medium article, "Coronavirus: The Hammer and the Dance". Tomas did an excellent job of describing these artifacts in the Hubei data in relationship to what he called the Hammer and the Dance and this gave us insight into interpreting the data from South Korea and hopefully the rest of the world soon .
Facebook
TwitterBased on projections made on December 17, the number of deaths due to COVID-19 in the United States by the end of March 2021 could range from 505,894 to 713,674 depending on the scenario. The best case scenario being 95 percent mask usage universally and the worst case being continued easing of social distancing mandates. This statistic shows the projected number of deaths due to COVID-19 in the U.S. from December 1, 2020 to March 31, 2021 based on three different scenarios, as of December 17.